Israel Journal of Mathematics

, Volume 64, Issue 2, pp 229–250 | Cite as

Suites de longueur minimale associees a un ensemble normal donne

  • Jean-Pierre Borel


For a given subsetA of the set of real numbers, we search a sequence Λ=(λ n) of real numbers such that bothA is the normal setB(Λ) associated to Λ, and Λ takes its values in a bounded interval, with a minimal lengthM. A lower bound ofM is obtained, which gives some necessary conditions of existency of such a bounded sequence Λ. More details are given whenA is a subset of the set of integers. In this case, the problem is to find a polynomialQ of lowest degree such that the productP.Q has non-negative coefficients, for some special given polynomialP.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BES]
    A. S. Besicovitch,On the density of certain sequences of integers, Math. Ann.110 (1934), 336–341.MATHCrossRefMathSciNetGoogle Scholar
  2. [BOR]
    J.-P. Borel,Parties d’ensembles b-normaux, Manuscr. Math.62 (1988), 317–335.MATHCrossRefMathSciNetGoogle Scholar
  3. [DRE]
    F. Dress et M. Mendès-France,Caractérisation des ensembles normaux dans Z, Acta Arith.17 (1970), 115–120.MATHMathSciNetGoogle Scholar
  4. [ERD]
    P. Erdös,Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc.10 (1935), 126–128.MATHCrossRefGoogle Scholar
  5. [GRO]
    E. Grosswald,Reducible rational fractions of the type of Gaussian polynomials with only non negative coefficients, Bull. Can. Math.21 (1978), 21–30.MATHMathSciNetGoogle Scholar
  6. [HAL]
    H. Halberstam and K. F. Roth,Sequences, Vol. I, Clarendon Press, Oxford, 1966.MATHGoogle Scholar
  7. [KUI]
    L. Kuipers and H. Niederreiter,Uniform Distribution of Sequences, Wiley-Interscience, New York, 1974.MATHGoogle Scholar
  8. [LIA]
    P. Liardet et G. Rauzy, Communication personnelle.Google Scholar
  9. [MEN 1]
    M. Mendès-France,Deux remarques concernant l’équirépartition des suites, Acta Arith.14 (1968), 163–167.MATHMathSciNetGoogle Scholar
  10. [MEN 2]
    M. Mendès-France,La réunion des ensembles normaux, J. Number Theory2 (1970), 354–351.CrossRefGoogle Scholar
  11. [RAU]
    G. Rauzy,Caractérisation des ensembles normaux, Bull. Soc. Math. France98 (1970), 401–414.MATHMathSciNetGoogle Scholar
  12. [REI]
    D. Reich,On certain polynomials of Gaussian type, Can. J. Math.31 (1979), 274–281.MATHGoogle Scholar
  13. [REN]
    A. Rényi,Calcul des probabilités, Dunod, Paris, 1966.MATHGoogle Scholar
  14. [TEN]
    G. Tenenbaum,Sur la probabilité qu’un entier possède un diviseur dans un intervalle donné. Compos. Math.51 (1984), 243–263.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University 1988

Authors and Affiliations

  • Jean-Pierre Borel
    • 1
  1. 1.Département de MathématiquesU.F.R. des SciencesLimoges CedexFrance

Personalised recommendations