Bounds on spherical derivatives for maps into regions with symmetries

  • Mario Bonk
  • William Cherry


Meromorphic Function Minimum Point Riemann Sphere Interior Angle Regular Tetrahedron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [A-G]
    S. B. Agard and F. W. Gehring,Angles and quasiconformal mappings, Proc. London Math. Soc. (3)14A (1965), 1–21.MathSciNetCrossRefGoogle Scholar
  2. [Ca]
    C. Carathéodory,Theory of Functions of a Complex Variable, Volume Two, Chelsea, New York, 1960.Google Scholar
  3. [Hej]
    D. Hejhal,Universal covering maps for variable regions, Math. Z.137 (1974), 7–20.MATHCrossRefMathSciNetGoogle Scholar
  4. [Hem]
    J. A. Hempel,The Poincaré metric on the twice punctured plane and the theorems of Landau and Schottky, J. London Math. Soc. (2)20 (1979), 435–445.MATHCrossRefMathSciNetGoogle Scholar
  5. [Ho]
    E. Hopf,A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc.3 (1952), 791–793.MATHCrossRefMathSciNetGoogle Scholar
  6. [Je]
    J. A. Jenkins,On explicit bounds in Landau’s theorem II, Can. J. Math.33 (1981), 559–562.MATHMathSciNetGoogle Scholar
  7. [JØ]
    V. JØrgensen,On an inequality for the hyperbolic measure and its applications to the theory of functions, Math. Scand.4 (1956), 113–124.MATHMathSciNetGoogle Scholar
  8. [Mi1]
    D. Minda,Estimates for the hyperbolic metric, Kodai Math. J.8 (1985), 249–258.MATHCrossRefMathSciNetGoogle Scholar
  9. [Mi2]
    D. Minda,The hyperbolic metric and Bloch constants for spherically convex regions, Complex Variables5 (1986), 127–140.MATHMathSciNetGoogle Scholar
  10. [Mi3]
    D. Minda,A reflection principle for the hyperbolic metric and applications to geometric function theory, Complex Variables8 (1987), 129–144.MATHMathSciNetGoogle Scholar
  11. [M-O]
    D. Minda and M. Overholt,The minimum points of the hyperbolic metric, Complex Variables21 (1993), 265–277.MATHMathSciNetGoogle Scholar
  12. [Ne]
    Z. Nehari,Conformal Mapping, Dover, New York, 1952.MATHGoogle Scholar
  13. [P-W]
    M. H. Protter and H. Weinberger,Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1967.Google Scholar
  14. [Ya]
    A. Yamada,Bounded analytic functions and metrics of constant curvature on Riemann surfaces, Kodai Math. J.11 (1988), 317–324.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1996

Authors and Affiliations

  • Mario Bonk
    • 1
  • William Cherry
    • 2
  1. 1.Institut für AnalysisTech. Univ. BraunschweigBraunschweigGermany
  2. 2.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations