Journal d’Analyse Mathématique

, Volume 69, Issue 1, pp 153–200 | Cite as

Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization

  • R. del Rio
  • S. Jitomirskaya
  • Y. Last
  • B. Simon


Spectral Measure Hausdorff Dimension Dynamical Localization Point Spectrum Anderson Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Aizenman,Localization at weak disorder: Some elementary bounds, Rev. Math. Phys.6 (1994), 1163–1182.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Aizenman and S. Molchanov,Localization at large disorder and at extreme energies: An elementary derivation, Comm. Math. Phys.157 (1993), 245–278.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    N. Aronszajn,On a problem of Weyl in the theory of Sturm-Liouville equations, Amer. J. Math.79 (1957), 597–610.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Avron and B. Simon,Almost periodic Schrödinger operators. II. The integrated density of states, Duke Math. J.50 (1983), 369–391.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    A. S. Besicovitch,On linear sets of points of fractional dimension, Math. Annalen101 (1929), 161–193.CrossRefMathSciNetGoogle Scholar
  6. [6]
    G. Boole,On the comparison of transcendents, with certain applications to the theory of definite integrals, Philos. Trans. Royal Soc.147 (1857), 780.Google Scholar
  7. [7]
    R. del Rio, N. Makarov and B. Simon,Operators with singular continuous spectrum, II. Rank one operators, Comm. Math. Phys.165 (1994), 59–67.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    F. Delyon, H. Kunz and B. Souillard,One dimensional wave equations in disordered media, J. Phys.A 16 (1983), 25–42.MathSciNetGoogle Scholar
  9. [9]
    W. Donoghue,On the perturbation of the spectra, Comm. Pure Appl. Math.18 (1965), 559–579.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    K. J. Falconer,Fractal Geometry, Wiley, Chichester, 1990.MATHGoogle Scholar
  11. [11]
    A. Gordon,Pure point spectrum under 1-parameter perturbations and instability of Anderson localization, Comm. Math. Phys.164 (1994), 489–505.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    I. Guarneri,Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett.10 (1989), 95–100.CrossRefGoogle Scholar
  13. [13]
    A. Hof, O. Knill and B. Simon,Singular continuous spectrum for palindromic Schrödinger operators, Comm. Math. Phys.174 (1995), 149–159.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    J. S. Howland,On a theorem of Carey and Pincus, J. Math. Anal.145 (1990), 562–565.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    V. A. Javrjan,A certain inverse problem for Sturm-Liouville operators, Izv. Akad. Nauk Armjan. SSR, Ser. Mat.6 (1971), 246–251.MathSciNetGoogle Scholar
  16. [16]
    S. Jitomirskaya,Singular continuous spectrum and uniform localization for ergodic Schrödinger operators, J. Funct. Anal., to appear.Google Scholar
  17. [17]
    S. Jitomirskaya and B. Simon,Operators with singular continuous spectrum, III. Almost periodic Schrödinger operators, Comm. Math. Phys.165 (1994), 201–205.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    T. Kato,Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1980.MATHGoogle Scholar
  19. [19]
    S. Kotani,Lyapunov exponents and spectra for one-dimensional random Schrödinger operators, Contemp. Math.50 (1986), 277–286.MathSciNetGoogle Scholar
  20. [20]
    H. Kunz and B. Souillard,Sur le spectre des operateurs aux differences finies aleatoires, Comm. Math. Phys.78 (1980), 201–246.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Y. Last,A relation between a. c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants, Comm. Math. Phys.151 (1993), 183–192.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Y. Last,Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal., to appear.Google Scholar
  23. [23]
    F. Martinelli and E. Scoppola,Introduction to the mathematical theory of Anderson localization, Rivista del Nuovo Cimento10 (1987), No. 10.Google Scholar
  24. [24]
    A. G. Poltoratski,On the distributions of boundary values of Cauchy integrals, Proc. Amer. Math. Soc, to appear.Google Scholar
  25. [25]
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, III. Scattering Theory, Academic Press, London, San Diego, 1979.MATHGoogle Scholar
  26. [26]
    C. A. Rogers,Hausdorff Measures, Cambridge Univ. Press, London, 1970.MATHGoogle Scholar
  27. [27]
    C. A. Rogers and S. J. Taylor,The analysis of additive set functions in Euclidean space, Acta Math.101 (1959), 273–302.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    C. A. Rogers and S. J. Taylor,Additive set functions in Euclidean space. II, Acta Math.109 (1963), 207–240.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    W. Rudin,Real and Complex Analysis, 3rd ed., McGraw-Hill, Singapore, 1986.Google Scholar
  30. [30]
    S. Saks,Theory of the Integral, Hafner, New York, 1937.Google Scholar
  31. [31]
    B. Simon,Absence of ballistic motion, Commun. Math. Phys.134 (1990), 209–212.MATHCrossRefGoogle Scholar
  32. [32]
    B. Simon,Cyclic vectors in the Anderson model, Rev. Math. Phys.6 (1994), 1183–1185.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    B. Simon,Spectral analysis of rank one perturbations and applications, CRM Proc. Lecture Notes8 (1995), 109–149.Google Scholar
  34. [34]
    B. Simon,Operators with singular continuous spectrum: I. General operators, Ann. of Math. 141 (1995), 131–145.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    B. Simon,Operators with singular continuous spectrum, VI. Graph Laplacians and Laplace-Beltrami operators, Proc. Amer. Math. Soc.124 (1996), 1177–1182.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    B. Simon,L p norms of the Borel transform and the decomposition of measures, Proc. Amer. Math. Soc.123 (1995), 3749–3755.MATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    B. Simon,Operators with singular continuous spectrum, VII. Examples with borderline time decay, Comm. Math. Phys.176 (1996), 713–722.MATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    B. Simon,Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators, Proc. Amer. Math. Soc., to appear.Google Scholar
  39. [39]
    B. Simon and G. Stolz,Operators with singular continuous spectrum, V. Sparse potentials, Proc. Amer. Math. Soc, to appear.Google Scholar
  40. [40]
    B. Simon and T. Wolff,Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, Comm. Pure Appl. Math.39 (1986), 75–90.MATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    R. S. Strichartz,Fourier asymptotics of fractal measures, J. Funct. Anal.89 (1990), 154–187.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1996

Authors and Affiliations

  • R. del Rio
    • 1
  • S. Jitomirskaya
    • 2
  • Y. Last
    • 3
  • B. Simon
    • 3
  1. 1.IIMAS-UNAMMexico D.F.Mexico
  2. 2.Department of MathematicsUniversity of CaliforniaIrvineUSA
  3. 3.Division of Physics, Mathematics and AstronomyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations