Skip to main content
Log in

Distinguishing sceneries by observing the scenery along a random walk path

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

LetG be an infinite connected graph with vertex setV. Ascenery onG is a map ξ :V → 0, 1 (equivalently, an assignment of zeroes and ones to the vertices ofG). LetS n n≥0 be a simple random walk onG, starting at some distinguished vertex v0. Now let ξ and η be twoknown sceneries and assume that we observe one of the two sequences ξ(S n) n≥0 or {η(S n)} n≥0 but we do not know which of the two sequences is observed. Can we decide, with a zero probability of error, which of the two sequences is observed? We show that ifG = Z orG = Z2, then the answer is “yes” for each fixed ξ and “almost all” η. We also give some examples of graphsG for which almost all pairs (ξ, η) are not distinguishable, and discuss some variants of this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Burdzy,Some path properties of iterated Brownian motion, inSeminar on Stochastic Processes (E. Çinlar and M. J. Sharpe, eds.), BirkhÄuser, Boston, 1993, pp. 67–87.

    Google Scholar 

  2. J. T. Cox and R. Durrett,Oriented percolation in dimension d ≥4: bounds and asymptotic formulas, Math. Proc. Camb. Phil. Soc.93 (1983), 151–162.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. A. Darling and M. Kac,On occupation times for Markoff processes, Trans. Amer. Math. Soc.84 (1957), 444–458.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Th. F. den Hollander,Mixing properties for random walk in random scenery, Ann. Probab.16 (1988), 1788–1802.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. L. Doob,Stochastic Processes, Wiley, New York, 1953.

    MATH  Google Scholar 

  6. R. Durrett,Probability: Theory and Examples, Wadsworth & Brooks/Cole, Pacific Grove, 1991.

    MATH  Google Scholar 

  7. M. Harris and M. Keane, in preparation, 1995.

  8. C. D. Howard,Orthogonality of measures induced by random walks with scenery, Combinatorics, Probability and Computing, to appear.

  9. CD. Howard,Detecting defects in periodic scenery by random walks on ℤ Random Structures Algorithms8 (1996), 59–74.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. D. Howard,The orthogonality of measures induced by random walk with scenery, Ph.D. Thesis, Courant Inst. Math. Sciences, New York, 1995.

    Google Scholar 

  11. K. ItÔ and H. P. McKean, Jr.,Potentials and the random walk, Ill. J. Math.4 (1960), 119–132.

    MATH  Google Scholar 

  12. J-P. Kahane, J. Peyrière, Z-Y. Wen and L-M. Wu,Moyennes uniformes et moyennes suivant une marche aléatoire, Prob. Theor. Rel. Fields79 (1988), 625–628.

    Article  MATH  Google Scholar 

  13. M. Keane and W. Th. F. den Hollander,Ergodic properties of color records, Physica138A (1986), 183–193.

    Google Scholar 

  14. J. Kerstan and K. Matthes,Gleichverteilungseigenschaften von Faltungspotenzen auf lokalkompakten abelschen Gruppen, Wiss. Z Friedrich Schiller Univ. Jena, Math.-Natur. Reihe14 (5) (1965), 457–462.

    MathSciNet  Google Scholar 

  15. H. Kesten,Hitting probabilities of random walks on ℤ d, Stoch. Proc. Appl.25 (1987), 165–184.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Kesten and F. Spitzer,A limit theorem related to a new class of self similar processes, Z. Wahrsch. verw. Geb.50 (1979), 5–25.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Lindvall,Lectures on the Coupling Method, Wiley, New York, 1992.

    MATH  Google Scholar 

  18. A. Rényi,Probability Theory, North-Holland, Amsterdam, 1970.

    Google Scholar 

  19. P. Révész,Random Walk in Random and Non-Random Environments, World Scientific, Singapore, 1990.

    MATH  Google Scholar 

  20. F. Spitzer,Principles of Random Walk, D. van Nostrand, Princeton, 1964.

    MATH  Google Scholar 

  21. F. Spitzer,Discussion on subadditive ergodic theory by J. F. C. Kingman, Ann. Probab.6 (1973), 883–909.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of I.B. was supported by the US. Army Research Office through the Mathematical Sciences Institute of Cornell University. The work of H.K. was supported by the NSF through a grant to Cornell University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benjamini, I., Kesten, H. Distinguishing sceneries by observing the scenery along a random walk path. J. Anal. Math. 69, 97–135 (1996). https://doi.org/10.1007/BF02787104

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787104

Keywords

Navigation