Journal d’Analyse Mathématique

, Volume 2, Issue 1, pp 126–149 | Cite as

On weighted kernels

  • Zeev Nehari


Weight Function Harmonic Function Kernel Function Conformal Mapping Recursion Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Bergman, The kernel function and conformal mapping, New York, Am. Math. Soc.; 1950.MATHGoogle Scholar
  2. 2.
    P. R. Garabedian, A partial differential equation arising in conformal mapping,Pacific J. Math., vol. 1, 1951, pp. 485–524.MATHMathSciNetGoogle Scholar
  3. 3.
    P. R. Garabedian and M. Schiffer, Identities in the theory of conformal mapping,Trans. Am. Math. Soc., vol. 65, 1949, pp. 187–238.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    P. R. Garabedian and M. Schiffer, On existence theorems of potential theory and conformal mapping,Ann. of Math., vol. 52, 1950, pp. 164–187.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Z. Nehari, A class of domain functions and some allied extremal problems,Trans. Am. Math. Soc., vol. 69, 1950, pp. 161–178.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Z. Nehari, On the numerical computation of mapping functions by orthogonalization,Proc. Nat. Acad. Sci., vol. 37, 1951, pp. 369–372.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    G. Szegö, Ueber orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören,Math. Zeits., vol. 9, 1921, pp. 218–270.CrossRefGoogle Scholar
  8. 8.
    G. Szegö, Orthogonal polynomials, New York, Am. Math. Soc., 1939.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1952

Authors and Affiliations

  • Zeev Nehari
    • 1
  1. 1.Washington UniversitySt. LouisU.S.A.

Personalised recommendations