Skip to main content
Log in

A novel synthesis method for cyclodextrins from maltose in water-organic solvent systems

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel enzymatic synthesis method of cyclodextrin (CD) from low-mol-wt maltose using cyclomaltodextrin glucanotransferase (CGTase) fromBacillus macerans has been developed in various water-organic solvent systems. A Β-CD was synthesized in a two-phase system consisting of water and cyclohexane. However, no CDs could be synthesized in an aqueous buffer solution. A maximal yield of Β- CD has been obtained at a cyclohexane content volume of 44%. This synthesis has been obtained only at low temperatures, i.e., 7‡C, and did not take place at 50‡C. In addition, various organic solvents have been used for the enzymatic synthesis of CD from maltose. Consequently, Β-CD could be synthesized in various water-organic solvent systems, e.g., cyclohexane, benzene, xylene, and chloroform, but no enzymatic reaction occurred using aliphaticn-hydrocarbon solvents such as hexane, dodecane, and hexadecane. Furthermore, α- and Β- CD could be synthesized in water mixture solutions using organic solvents having an alcoholic group (e.g., ethanol, propanol, butanol, and pentanol) in a wide range of the reaction temperatures, typically 7–50‡C. In this temperature range, α- and Β-CD were also formed and the maximal yield from maltose to Β-CD of approx 13% was reached in 60 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makinen, M. W. and Fink, A. L. (1977),Ann. Rev. Biophys. Bioeng. 6, 301–343.

    Article  CAS  Google Scholar 

  2. Dastoli, F. R. and Price, S. (1967),Arch. Biochem. Biophys. 118, 163–165.

    Article  CAS  Google Scholar 

  3. Luisi, P. L. (1985),Angew. Chem. Int. Ed. Engl. 24, 439–450.

    Article  Google Scholar 

  4. Martinek, K., Levashov, A. V., Klyachko, N., Khmelnitski, Y. L., and Berezin, I. V. (1986),Eur. J. Biochem. 155, 453–468.

    Article  CAS  Google Scholar 

  5. Waks, M. (1986),Proteins: Struct. Funct. Genet. 1, 4–15.

    Article  CAS  Google Scholar 

  6. Klibanov, A. M. (1986),Chemtech 16, 354–359.

    CAS  Google Scholar 

  7. Halling, P. J. (1987),Biotechnol. Ave. 5, 47–84.

    CAS  Google Scholar 

  8. Svensson, I., Wehtje, E., Adlercreutz, P., and Mattiasson, B. (1994),Biotechnol. Bioeng. 44, 549–556.

    Article  CAS  Google Scholar 

  9. Yang, Z. and Robb, D. A. (1994),Biotechnol. Bioeng. 43, 365–370.

    Article  CAS  Google Scholar 

  10. Zaks, A. and Klibanov, A. M. (1984),Science 224, 1249–1251.

    Article  CAS  Google Scholar 

  11. Zaks, A. and Klibanov, A. M. (1988),J. Biol. Chem. 263, 3149–3201.

    Google Scholar 

  12. Zaks, A. and Klibanov, A. M. (1986),J. Am. Chem. Soc. 108, 2767,2768.

    Article  Google Scholar 

  13. Zaks, A. and Klibanov, A. M. (1985),Proc. Natl. Acad. Sci. USA 82, 3192–3196.

    Article  CAS  Google Scholar 

  14. Iborra, J. L., Obón, J. M., Manjón, A., and Cánovas, M. (1992),Biocatalysis 7, 37–48.

    Article  CAS  Google Scholar 

  15. Kasche, V. (1986),Enzyme Microb. Technol. 8, 4–6.

    Article  CAS  Google Scholar 

  16. Kise, H. and Shirato, H. (1988),Enzyme Microb. Technol. 10, 582–585.

    Article  CAS  Google Scholar 

  17. Laroute, V. and Willemot, R-M. (1989),Biotechnol. Lett. 11, 249–254.

    Article  CAS  Google Scholar 

  18. Dordick, J. S. (1989),Enzyme Microb. Technol 11, 194–211.

    Article  CAS  Google Scholar 

  19. Laroute, V. and Willemot, R-M (1992),Enz. Microbiol. Technol. 14, 528–534.

    Article  CAS  Google Scholar 

  20. Villiers, A. (1891),Compt. Rend. Acad. Sci. 112, 536.

    Google Scholar 

  21. Schardinger, F. (1904),Wiener Klinische Wochenschrift 17, 207–209.

    Google Scholar 

  22. French, D. Levine, M. L., and Pazur, J. H. (1949),J. Am. Chem. Soc. 71, 356–358.

    Article  CAS  Google Scholar 

  23. Bender, M. L. and Komiyama, M. (1978),Cyclodextrin Chemistry, Springer-Verlag, Heidelberg, pp. 2–9.

    Google Scholar 

  24. Cramer, F. and Hettler, H. (1967),Naturwissenschaften 54, 625–632.

    Article  CAS  Google Scholar 

  25. Saenger, W. (1980),Angew. Chem. Int. Ed. Engl. 19, 344–362.

    Article  Google Scholar 

  26. Kitahata, S., Tasuyama, N., and Okada, S. (1974),Agr. Biol. Chem. 38, 387–393.

    CAS  Google Scholar 

  27. Pongsawasdi, P. and Yagisawa, M. (1987),J. Ferment. Technol. 65, 463–467.

    Article  CAS  Google Scholar 

  28. Pongsawasdi, P. and Yagisawa, M. (1988),Agr. Biol. Chem. 52, 1099–1103.

    CAS  Google Scholar 

  29. Kitahata, S. and Okada, S. (1974),Agr. Biol. Chem. 38, 2413–2417.

    CAS  Google Scholar 

  30. Nagamura, N. and Horikoshi, K. (1976),Agr. Biol. Chem. 40, 753–757.

    Google Scholar 

  31. Nomoto, N., Chem, C. C., and Sheu, D. C. (1986),Agr. Biol. Chem. 50, 2701–2707.

    CAS  Google Scholar 

  32. Ohnishi, M., Ota, U., Tonomura, B., and Kubota, M. (1992),Carbohydr. Res. 227, 285–291.

    Article  CAS  Google Scholar 

  33. Bock, K., Pedersen, C., and Pederson, H. (1986),Adv. Carbohyd. Chem. and Biochem 42, 193–225.

    Article  Google Scholar 

  34. Kobayashi, S. (1975),J. Jpn. Soc. Starch Sci 22, 126–132.

    Google Scholar 

  35. Hashimoto, H., Hara, K., Kuwahara, N., and Arakawa, K. (1985),J. Jpn. Soc. Starch Sci,32, 299–306.

    CAS  Google Scholar 

  36. Tsuchiyama, Y., Nomura, H., Okabe, M., and Okamoto, R. (1991),J. Ferment. Bioeng. 71, 413–417.

    Article  CAS  Google Scholar 

  37. Morita, T., Lim, H. J., and Karube, I. (1995),J. Biotechnol. 38, 253–261.

    Article  CAS  Google Scholar 

  38. Morita, T. and Karube, I. (1994),Applied Biochem. Biotechnol. in press.

  39. Kobayashi, S., Kainuma, K., and Suzuki, S. (1978),Carbohydr. Res. 61, 229–238.

    Article  CAS  Google Scholar 

  40. Horikoshi, K. (1979),Process Biochemistry May, 26–30.

  41. Lee, Y. D. and Kim, H. S. (1992),Biotechnol. Bioeng. 39, 977–983.

    Article  CAS  Google Scholar 

  42. MÄkelÄ, M., Mattsson, P., Schinina, M. E., and Korpela, T. (1988),Biotechnol. Appl. Biochem.,10, 414–427.

    Google Scholar 

  43. Flaschel, E., Landert, P., and Renden, A. (1982), inProceedings of the First International Symposium on Cyclodextrins, Szejtli, J. ed., Reidel, Budapest, p. 41.

    Google Scholar 

  44. Lee, Y. D. and Kim, H. S. (1991),Enz. Microbiol. Technol. 15, 499–503.

    Article  Google Scholar 

  45. Mattsson, P., Korpela, T., Paavilainen, S., and MÄkelÄ (1991),Appl. Biochem. Biotechnol. 30, 17–28.

    CAS  Google Scholar 

  46. MÄkelÄ, M. J. and Korpela, T. K. (1988),J. Biochem. Biophys. Methods 15, 307–318.

    Article  Google Scholar 

  47. Shiraishi, F., Kawakami, K., Marushima, H., and Kusunoki, K. (1989),Starch/Starke 41, 151–155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, T., Yoshida, N. & Karube, I. A novel synthesis method for cyclodextrins from maltose in water-organic solvent systems. Appl Biochem Biotechnol 56, 311–324 (1996). https://doi.org/10.1007/BF02786961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786961

Index Entries

Navigation