Applied Biochemistry and Biotechnology

, Volume 56, Issue 2, pp 189–195 | Cite as

Salt-induced changes in lipid composition and ethanol tolerance inSaccharomyces cerevisiae

  • Sukesh Chander Sharma
  • Dilip Raj
  • Mehdi Forouzandeh
  • Mohinder P. Bansal
Original Articles


The effect of salt stress on lipid composition and its relationship with ethanol tolerance inSaccharomyces cerevisiae was studied. Amounts of phospholipids as well as that of sterols decreased, whereas that of protein and glycolipids increased with increasing salt concentration. Relative proportion of amino phospholipids (phosphatidylethanolamine and phosphatidylserine) decreased, whereas that of phosphatidylcholine showed a reverse trend. Cells grown under increasing salt concentration were more resistant to ethanol-induced leakage of UV-absorbing substances, an index of ethanol endurance. Results showed an overlap between osmotolerance and ethanol tolerance in this strain.

Index Entries

Salt stress S.cerevisiae phospholipids ethanol endurance osmotolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomas, D. S., Hossack, J. A., and Rose, A. H. (1978),Arch. Microb. 117, 239.CrossRefGoogle Scholar
  2. 2.
    Hayshida, S. and Ohta, K. (1980),Agric. Biol. Chem. 44, 2561.Google Scholar
  3. 3.
    Ingram, L. O. and Buttke, T. M. (1984),Adv. Microb. Physiol. 25, 256.Google Scholar
  4. 4.
    Mishra, P. and Prasad, R. (1988),J. Gen. Microbiol. 134, 3205.Google Scholar
  5. 5.
    Van Uden, N. (1984),Crit. Rev. Biotech. 1, 263.CrossRefGoogle Scholar
  6. 6.
    Trollmo, C., André, L., Blomberg, A., and Adler, L. (1988),FEMS Microbiol. Lett. 56, 321.CrossRefGoogle Scholar
  7. 7.
    Li, G. and Hahn, G. M. (1978),Nature 274, 699.CrossRefGoogle Scholar
  8. 8.
    Russell, N. J. (1989),J. Bioenerg. Biomembr. 21, 93.CrossRefGoogle Scholar
  9. 9.
    Tunblad-Johnson, I., André, L., and Adler, L. (1987),Biochim. Biophys. Acta 921, 116.Google Scholar
  10. 10.
    Hosono, K. (1992),J. Gen. Microbiol. 138, 91.Google Scholar
  11. 11.
    Yagi, T. (1988),FEMS Microbiol. Lett. 49, 25.CrossRefGoogle Scholar
  12. 12.
    Lees, S. S., Robinson, F. M., and Wang, H. Y. (1981),Biotech. Bioeng. Symp. 11, 641.Google Scholar
  13. 13.
    Bligh, E. G. and Dyer, W. J. (1959),Can. J. Biochem. Physiol. 37, 911.Google Scholar
  14. 14.
    Ames, B. (1966),Methods Enzymol. 14, 530.Google Scholar
  15. 15.
    Sperry, W. and Webb, M. (1950),J. Bid. Chem. 187, 97.Google Scholar
  16. 16.
    Dubois, M., Gilles, K. A., Hamilton, K. A., Roberts, P. A., and Smith, F. (1966),Anal. Chem. 28, 350.CrossRefGoogle Scholar
  17. 17.
    Mangold, H. K. (1961),J. Am. Oil Chem. Soc. 38, 709.CrossRefGoogle Scholar
  18. 18.
    Bradford, M. M. (1976),Anal. Biochem. 72, 248.CrossRefGoogle Scholar
  19. 19.
    Demel, R. A. and de Kruijff, B. (1978),Biochim. Biophys. Acta 457, 109.Google Scholar
  20. 20.
    Curatolo, W. (1987),Biochim. Biophys. Acta 906, 111.Google Scholar
  21. 21.
    Cullis, P. R. and de Kruijff, B. (1978),Biochim. Biophys. Acta 513, 31.CrossRefGoogle Scholar
  22. 22.
    Brown, A. D. (1978),Adv. Microb. Physiol. 17, 181.CrossRefGoogle Scholar
  23. 23.
    Salgueiro, S. P., Sá-corria, L., and Novais, J. M. (1988),Appl. Environ. Microbiol. 54, 903.Google Scholar
  24. 24.
    Odumeru, J. A., Amore, T. D., Russell, I., and Stewart, G. G. (1992),J. Indust. Microbiol. 10, 111.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Sukesh Chander Sharma
    • 1
  • Dilip Raj
    • 2
  • Mehdi Forouzandeh
    • 1
  • Mohinder P. Bansal
    • 2
  1. 1.Department of BiochemistryPanjab University ChandigarhIndia
  2. 2.Department of BiophysicsPanjab University ChandigarhIndia

Personalised recommendations