Skip to main content
Log in

Degree theory forC 1 Fredholm mappings of index 0

  • Published:
Journal d’Analyse Mathematique Aims and scope

Abstract

We develop a degree theory forC 1 Fredholm mappings of index 0 between Banach spaces and Banach manifolds. As in earlier work devoted to theC 2 case, our approach is based upon the concept of parity of a curve of linear Fredholm operators of index 0. This avoids considerations about Fredholm structures involved in other approaches and leads to a theory as complete as that of Leray-Schauder in a much broader setting. In particular, the well-known possible sign change under homotopy is fully elucidated. The technical difficulty arising withC 1 versusC 2 Fredholm mappings of index 0 is notorious: with onlyC 1 smoothness, the Sard-Smale theorem is no longer available to handle crucial issues involving homotopy. In this work, this difficulty is overcome by using a new approximation theorem forC 1 Fredholm mappings of arbitrary index instead of the Sard—Smale theorem when dealing with homotopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Benevieri and M. Furi,A simple notion of orientability for Fredholm maps of index zero between Banach manifolds and degree theory, Annales des Sciences Mathématiques du Québec (to appear).

  2. R. Bonic and J. Frampton,Smooth functions on Banach manifolds, J. Math. Mech.15 (1966), 877–898.

    MATH  MathSciNet  Google Scholar 

  3. Y. G. Borisovich, V. G. Zvyagin and Y. I. Sapronov,Nonlinear Fredholm maps and the LeraySchauder theory, Russian Math. Surveys324 (1977), 1–54.

    Article  Google Scholar 

  4. F. E. Browder,Nonlinear operators and nonlinear equations of evolution in Banach spaces, inNonlinear Functional Analysis (F. E. Browder, ed.), Proc. Symp. Pure Math.18 (Part 2) (1976).

  5. F. E. Browder and R. D. Nussbaum,The topological degree for noncompact nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. (N.S.)74 (1968), 671–676.

    MATH  MathSciNet  Google Scholar 

  6. R. Brussee,The canonical class and the C∞ properties of KÄhler surfaces, preprint.

  7. R. Caccioppoli,Sulle corrispondenze funzionali inverse diramate, teoria generale e applicazioni ad alcune equazioni funzionali nonlineari e alproblema di Plateau, I, II, Rend. Acad. Naz. Lincei(6)24 (1936), 258–263, 416–421.

    MATH  Google Scholar 

  8. K. D. Elworthy and A. J. Tromba,Differential structures and Fredholm maps on Banach manifolds, inGlobal Analysis (S. S. Chern and S. Smale, eds.), Proc. Symp. Pure Math.15 (1970), 45–94.

  9. K. D. Elworthy and A. J. Tromba,Degree theory on Banach manifolds, inNonlinear Functional Analysis (F. E. Browder, ed.), Proc. Symp. Pure Math., Part118 (1970), 86–94.

  10. P. M. Fitzpatrick and J. Pejsachowicz,The fundamental group of linear Fredholm operators and the global analysis of semilinear equations, Contemp. Math.72 (1988), 47–87.

    MathSciNet  Google Scholar 

  11. P. M. Fitzpatrick and J. Pejsachowicz,Parity and generalized multiplicity, Trans. Amer. Math. Soc.326 (1991), 281–305.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. M. Fitzpatrick, J. Pejsachowicz and P. J. Rabier,The degree of proper C 2 Fredholm mappings I, J. Reine Angew. Math.427 (1992), 1–33.

    MATH  MathSciNet  Google Scholar 

  13. P. M. Fitzpatrick, J. Pejsachowicz and P. J. Rabier,Orientability of Fredholm families and topological degree for orientable Fredholm mappings, J. Funct. Anal.124 (1994), 1–39.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. A. S. Isnard,The topological degree on Banach manifolds, Global Analysis and Its Applications, Vol. 2, International Atomic Energy Agency, Vienna, 1974.

    Google Scholar 

  15. H. Jeanjean, M. Lucia and C. A. Stuart,Branches of solutions to semilinear elliptic equations on ℝN, Math. Z. (to appear).

  16. M. A. Krasnoselskii and P. P. Zabreiko,Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss.263, Springer-Verlag, New York, 1984.

    Google Scholar 

  17. N. H. Kuiper,The homotopy type of the unitary group of Hilbert space, Topology3 (1965), 19–30.

    Article  MATH  MathSciNet  Google Scholar 

  18. N. Moulis,Approximation de fonctions différentiables sur certains espaces de Banach, Ann. Inst. Fourier (Grenoble)21 (1971), 293–345.

    MATH  MathSciNet  Google Scholar 

  19. L. Nirenberg,Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc. (N.S.)4 (1981), 267–301.

    MATH  MathSciNet  Google Scholar 

  20. R. D. Nussbaum,The fixed point index and fixed point theorems, inTopological Methods for Ordinary Differential Equations (M.G. Furi and P. Zecca, eds.), Lecture Notes in Math.1537, Springer-Verlag, New York, 1993.

    Google Scholar 

  21. R. S. Palais,Lusternik—Schnirelman theory on Banach manifolds, Topology5 (1966), 115–132.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Pejsachowicz and P. J. Rabier,A substitute for the Sard—Smale theorem in the C1case, J. Analyse Math., this volume.

  23. F. Quinn and A. Sard,Hausdorff conullity of critical images of Fredholm maps, Amer. J. Math.94 (1972), 1101–1110.

    Article  MATH  MathSciNet  Google Scholar 

  24. PH. Rabinowitz,Some global results for nonlinear eigenvalue problems, J. Funct. Anal.7 (1971), 487–513.

    Article  MATH  MathSciNet  Google Scholar 

  25. Y. I. Sapronov,On the degree theory for nonlinear Fredholm maps, Voronezh Univ. Trudy Nauchn. Issled. Inst. Mat. No.11 (1973), 93–101.

  26. S. Smale,An infinite dimensional generalization of Sard’s theorem, Amer. J. Math.87 (1965), 861–866.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Troestler and M. Willem,Nontrivial solutions of a semilinear Schrödinger equation, Comm. Partial Differential Equations21 (1996), 1431–1449.

    Article  MATH  MathSciNet  Google Scholar 

  28. A. J. Tromba,The Euler characteristic of vector fields on Banach manifolds and a globalization of Leray-Schauder degree, Adv. Math.28 (1978), 148–173.

    Article  MATH  MathSciNet  Google Scholar 

  29. V. G. Zvyagin,A study of the topological properties of nonlinear operators, Doctoral dissertation, Voronezh (1974).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacobo Pejsachowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pejsachowicz, J., Rabier, P.J. Degree theory forC 1 Fredholm mappings of index 0. J. Anal. Math. 76, 289–319 (1998). https://doi.org/10.1007/BF02786939

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786939

Keywords

Navigation