Journal d’Analyse Mathematique

, Volume 76, Issue 1, pp 289–319 | Cite as

Degree theory forC 1 Fredholm mappings of index 0

  • Jacobo Pejsachowicz
  • Patrick J. Rabier


We develop a degree theory forC 1 Fredholm mappings of index 0 between Banach spaces and Banach manifolds. As in earlier work devoted to theC 2 case, our approach is based upon the concept of parity of a curve of linear Fredholm operators of index 0. This avoids considerations about Fredholm structures involved in other approaches and leads to a theory as complete as that of Leray-Schauder in a much broader setting. In particular, the well-known possible sign change under homotopy is fully elucidated. The technical difficulty arising withC 1 versusC 2 Fredholm mappings of index 0 is notorious: with onlyC 1 smoothness, the Sard-Smale theorem is no longer available to handle crucial issues involving homotopy. In this work, this difficulty is overcome by using a new approximation theorem forC 1 Fredholm mappings of arbitrary index instead of the Sard—Smale theorem when dealing with homotopies.


Banach Space Base Point Real Banach Space Degree Theory Homotopy Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Benevieri and M. Furi,A simple notion of orientability for Fredholm maps of index zero between Banach manifolds and degree theory, Annales des Sciences Mathématiques du Québec (to appear).Google Scholar
  2. [2]
    R. Bonic and J. Frampton,Smooth functions on Banach manifolds, J. Math. Mech.15 (1966), 877–898.MATHMathSciNetGoogle Scholar
  3. [3]
    Y. G. Borisovich, V. G. Zvyagin and Y. I. Sapronov,Nonlinear Fredholm maps and the LeraySchauder theory, Russian Math. Surveys324 (1977), 1–54.CrossRefGoogle Scholar
  4. [4]
    F. E. Browder,Nonlinear operators and nonlinear equations of evolution in Banach spaces, inNonlinear Functional Analysis (F. E. Browder, ed.), Proc. Symp. Pure Math.18 (Part 2) (1976).Google Scholar
  5. [5]
    F. E. Browder and R. D. Nussbaum,The topological degree for noncompact nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. (N.S.)74 (1968), 671–676.MATHMathSciNetGoogle Scholar
  6. [6]
    R. Brussee,The canonical class and the C∞ properties of KÄhler surfaces, preprint.Google Scholar
  7. [7]
    R. Caccioppoli,Sulle corrispondenze funzionali inverse diramate, teoria generale e applicazioni ad alcune equazioni funzionali nonlineari e alproblema di Plateau, I, II, Rend. Acad. Naz. Lincei(6)24 (1936), 258–263, 416–421.MATHGoogle Scholar
  8. [8]
    K. D. Elworthy and A. J. Tromba,Differential structures and Fredholm maps on Banach manifolds, inGlobal Analysis (S. S. Chern and S. Smale, eds.), Proc. Symp. Pure Math.15 (1970), 45–94.Google Scholar
  9. [9]
    K. D. Elworthy and A. J. Tromba,Degree theory on Banach manifolds, inNonlinear Functional Analysis (F. E. Browder, ed.), Proc. Symp. Pure Math., Part118 (1970), 86–94.Google Scholar
  10. [10]
    P. M. Fitzpatrick and J. Pejsachowicz,The fundamental group of linear Fredholm operators and the global analysis of semilinear equations, Contemp. Math.72 (1988), 47–87.MathSciNetGoogle Scholar
  11. [11]
    P. M. Fitzpatrick and J. Pejsachowicz,Parity and generalized multiplicity, Trans. Amer. Math. Soc.326 (1991), 281–305.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    P. M. Fitzpatrick, J. Pejsachowicz and P. J. Rabier,The degree of proper C 2 Fredholm mappings I, J. Reine Angew. Math.427 (1992), 1–33.MATHMathSciNetGoogle Scholar
  13. [13]
    P. M. Fitzpatrick, J. Pejsachowicz and P. J. Rabier,Orientability of Fredholm families and topological degree for orientable Fredholm mappings, J. Funct. Anal.124 (1994), 1–39.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    C. A. S. Isnard,The topological degree on Banach manifolds, Global Analysis and Its Applications, Vol. 2, International Atomic Energy Agency, Vienna, 1974.Google Scholar
  15. [15]
    H. Jeanjean, M. Lucia and C. A. Stuart,Branches of solutions to semilinear elliptic equations on ℝN, Math. Z. (to appear).Google Scholar
  16. [16]
    M. A. Krasnoselskii and P. P. Zabreiko,Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss.263, Springer-Verlag, New York, 1984.Google Scholar
  17. [17]
    N. H. Kuiper,The homotopy type of the unitary group of Hilbert space, Topology3 (1965), 19–30.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    N. Moulis,Approximation de fonctions différentiables sur certains espaces de Banach, Ann. Inst. Fourier (Grenoble)21 (1971), 293–345.MATHMathSciNetGoogle Scholar
  19. [19]
    L. Nirenberg,Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc. (N.S.)4 (1981), 267–301.MATHMathSciNetGoogle Scholar
  20. [20]
    R. D. Nussbaum,The fixed point index and fixed point theorems, inTopological Methods for Ordinary Differential Equations (M.G. Furi and P. Zecca, eds.), Lecture Notes in Math.1537, Springer-Verlag, New York, 1993.Google Scholar
  21. [21]
    R. S. Palais,Lusternik—Schnirelman theory on Banach manifolds, Topology5 (1966), 115–132.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    J. Pejsachowicz and P. J. Rabier,A substitute for the Sard—Smale theorem in the C1case, J. Analyse Math., this volume.Google Scholar
  23. [23]
    F. Quinn and A. Sard,Hausdorff conullity of critical images of Fredholm maps, Amer. J. Math.94 (1972), 1101–1110.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    PH. Rabinowitz,Some global results for nonlinear eigenvalue problems, J. Funct. Anal.7 (1971), 487–513.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Y. I. Sapronov,On the degree theory for nonlinear Fredholm maps, Voronezh Univ. Trudy Nauchn. Issled. Inst. Mat. No.11 (1973), 93–101.Google Scholar
  26. [26]
    S. Smale,An infinite dimensional generalization of Sard’s theorem, Amer. J. Math.87 (1965), 861–866.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    C. Troestler and M. Willem,Nontrivial solutions of a semilinear Schrödinger equation, Comm. Partial Differential Equations21 (1996), 1431–1449.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    A. J. Tromba,The Euler characteristic of vector fields on Banach manifolds and a globalization of Leray-Schauder degree, Adv. Math.28 (1978), 148–173.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    V. G. Zvyagin,A study of the topological properties of nonlinear operators, Doctoral dissertation, Voronezh (1974).Google Scholar

Copyright information

© Hebrew University of Jerusalem 1998

Authors and Affiliations

  1. 1.Dipartimento di matematicaPolitecnico di TorinoTorinoItaly
  2. 2.Department of MathematicsUniversity of PittsburghPittsburghUSA

Personalised recommendations