Skip to main content
Log in

Enhancement of pullulan production by aureobasidium pullulans in batch culture using olive oil and sucrose as carbon sources

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of pigment-free pullulan byAureobasidium pullulans, using olive oil and sucrose as carbon (C) sources, in shake flasks, was investigated. Optimum medium composition for pullulan elaboration was 80 g/L sucrose, 25 mL/L olive oil, 5 mL/L Tween-80, 10 g/L glutamic acid, and an initial pH of 5.5. Maximum pullulan concentration (51.5 g/L), productivity (8.6 g/L·d), and yield (80.3%) were achieved under these conditions after 120 h of fermentation. The principal advantage of using olive oil and sucrose simultaneously as C sources was the elimination of the inhibitory effect of high sucrose concentrations (> 60 g/L) on pullulan production by the microorganism. Structural characterization by13C-NMR, monosaccharide, and methylation analyses, and pullulanase digestion, combined with size-exclusion chromatography, confirmed the identity of pullulan and the homogeneity of the released polysaccharide in the fermentation broths. There were no significant differences in structure between pullulan samples isolated from either olive oil-supplemented media or olive oil-free media. The molecular size of pullulan from the combined olive oil-sucrose fermentation was slightly lower (1.1 X 106) than that of conventional fermentation with sucrose as a single C source (1.4 X 106). Lowering the initial pH of the medium resulted in increased molecular size for the released polymer, but a lower pullulan yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuen, S. (1974),Process Biochem. 9, 7–922.

    CAS  Google Scholar 

  2. LeDuy, A., Zajic, J.E., and Luong, J. H. T. (1988), inEncyclopedia of Polymer Science and Engineering, vol. 13,2nd ed. (Mark, H. F., Bikales, N. M., Overberger, C. G., Menges, G., eds), Wiley, New York, pp. 650–660.

    Google Scholar 

  3. Seviour, R. J., Stasinopoulos, S. J., Auer, D. P. F., and Gibbs, P. A. (1992),Crit. Rev. Biochem. 12, 279–298.

    Article  CAS  Google Scholar 

  4. Deshpande, M. S., Rale, V. B., and Lynch, J. M. (1992),Enzyme Microb. Technol. 14, 514–527.

    Article  CAS  Google Scholar 

  5. LeDuy, A. and Boa, J. A. (1982),Can. J. Microbiol. 29, 143–146.

    Article  Google Scholar 

  6. Seviour, R. J., Kristiansen, B., and Harvey, L. (1984),Trans. Br. Mycol. Soc. 82, 350–357.

    Google Scholar 

  7. Dominguez, J. B., Goni, F. M., and Uruburu, F. (1978),J. Gen. Microbiol. 108, 111–117.

    CAS  Google Scholar 

  8. Catley, B. J. (1980),J. Gen. Microbiol. 120, 265–268.

    CAS  Google Scholar 

  9. Park, D. (1984),Trans. Br. Mycol. Soc. 82, 717–720.

    Google Scholar 

  10. Simon, L., Caye-Vaugien, C., and Bouchonneau, M. (1993),J. Gen. Microbiol. 139, 979–985.

    CAS  Google Scholar 

  11. Simon, L., Bouchet, B., Caye-Vaugien, C., and Gallant, D. J. (1995),Can. J. Microbiol. 40, 35–45.

    Article  Google Scholar 

  12. McNeil, B. and Kristiansen, B. (1990),Enzyme Microb. Technol. 12, 521–526.

    Article  CAS  Google Scholar 

  13. Catley, B. J. (1971),Appl. Microbiol. 22, 650–654.

    CAS  Google Scholar 

  14. Ono, K., Yasuda, N., and Ueda, S. (1977),Agric. Biol. Chem. 41, 2113–2118.

    CAS  Google Scholar 

  15. Reeslev, M., Nielsen, J. C., Olsen, J., Jensen, B., and Jacobsen, T. (1991),Mycol. Res. 95, 220–226.

    Google Scholar 

  16. Lacroix, C., LeDuy, A., Noel, G., and Choplin, L. (1985),Biotechnol. Bioeng. 27, 202–207.

    Article  CAS  Google Scholar 

  17. Rho, D., Mulchandani, A., Luong, J. H., and LeDuy, A. (1988),Appl. Microbiol. Biotechnol. 28, 361–366.

    Article  CAS  Google Scholar 

  18. Wecker, A. and Onken, U. (1991),Biotechnol. Lett. 13, 155–160.

    Article  CAS  Google Scholar 

  19. Imshenetskii, A. A., Kondrat’eva, T. R., and Smut’ko, A. N. (1980),Mikrobiologiya 50, 102–105.

    Google Scholar 

  20. Seviour, R. J. and Kristiansen, B. (1983),Eur. J. Appl. Microbiol. Biotechnol. 17, 178–181.

    Article  CAS  Google Scholar 

  21. Bulmer, M. A., Catley, B. J., and Kelly, P. J. (1987),Appl. Microbiol. Biotechnol. 25, 362–365.

    Article  CAS  Google Scholar 

  22. Auer, D. P. F. and Seviour, R. J. (1990),Appl. Microbiol. Biotechnol. 32, 637–644.

    Article  CAS  Google Scholar 

  23. Catley, B. J. (1971),Appl. Microbiol. 22, 641–649.

    CAS  Google Scholar 

  24. Schuster, R., Wenzig, E., and Mersmann, A. (1993),Appl. Microbiol. Biotechnol. 39, 155–158.

    Article  CAS  Google Scholar 

  25. Catley, B. J. (1970), FEBS Lett.10, 190–193.

    Article  CAS  Google Scholar 

  26. Pollock, T. J., Thorne, L., and Armentrout, R. W. (1992),Appl. Environ. Microbiol. 58, 877–883.

    CAS  Google Scholar 

  27. Schuster, R., Wenzig, E., and Mersmann, A. (1993),Appl. Microbiol. Biotechnol. 39, 155–158.

    Article  CAS  Google Scholar 

  28. Shabtai, Y. and Mukmenev, I. (1995),Appl. Microbiol. Biotechnol. 43, 595–603.

    Article  CAS  Google Scholar 

  29. Shin, Y. C., Kim, Y. H., Lee, H. S., Kim, Y. N., and Byun, S. M. (1987),Biotechnol. Lett. 9, 621–624.

    Article  CAS  Google Scholar 

  30. Taguchi, R., Kikuchi, Y., Sakano, Y., and Kobayashi, T. (1973),Agr. Biol. Chem. 37, 1583–1588.

    CAS  Google Scholar 

  31. Roukas, T. and Biliaderis, C. G. (1995),Appl. Biochem. Biotechnol. 55, 27–43.

    CAS  Google Scholar 

  32. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956),Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  33. Englyst, H., Wiggins, H. S., and Cummings, J. H. (1982),Analyst 107, 307–318.

    Article  CAS  Google Scholar 

  34. Ciucanu, I. and Kerek, F. (1984),Carbohydr. Res. 131, 209–217.

    Article  CAS  Google Scholar 

  35. Biliaderis, C. G., Grant, D. R., and Vose, J. R. (1981),Cereal Chem. 58, 496–502.

    CAS  Google Scholar 

  36. Youssef, F., Roukas, T., and Biliaderis, C. G. 1997, Process Biochem. in press.

  37. Schultz, B. E., Kraepelin, G., and Hinkelmann, W. (1974),J. Gen. Microbiol. 82, 1–13.

    Google Scholar 

  38. Kelly, P. and Catley, B. J. (1977),J. Gen. Microbiol. 102, 249–254.

    CAS  Google Scholar 

  39. Lee, K. Y. and Yoo, Y. J. (1993),Biotechnol. Lett. 15, 1021–1024.

    Article  CAS  Google Scholar 

  40. Catley, B. J. (1979), inMicrobial Polysaccharides and Polysaccharases, Berkeley, R. C. W., Gooday, G. W., Elwood, D. C., eds.,Academic, New York, pp. 69–80.

    Google Scholar 

  41. Catley, B. J. and Whelan, W. J. (1971),Arch. Biochem. Biophys. 143, 138–142.

    Article  CAS  Google Scholar 

  42. Catley, B. J., Ramsay, A., and Servis, C. (1986),Carbohydr. Res.,153, 79–86.

    Article  CAS  Google Scholar 

  43. Carolan, G., Catley, B. J., and McDougal, F. J. (1983),Carbohydr. Res. 114, 237–243.

    Article  CAS  Google Scholar 

  44. Gorin, P. A. J. (1981),Adv. Carbohydr. Chem. Biochem. 38, 13–104.

    Article  CAS  Google Scholar 

  45. Bock, K., Pedersen, C., and Pedersen, H. (1984),Adv. Carbohydr. Chem. Biochem. 42, 193–225.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youssef, F., Biliaderis, C.G. & Roukas, T. Enhancement of pullulan production by aureobasidium pullulans in batch culture using olive oil and sucrose as carbon sources. Appl Biochem Biotechnol 74, 13–30 (1998). https://doi.org/10.1007/BF02786883

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786883

Index entries

Navigation