Applied Biochemistry and Biotechnology

, Volume 55, Issue 3, pp 249–259 | Cite as

β-Transelimination of citrus pectin catalyzed by penicillium italicum pectin lyase in a membrane reactor

  • Itziar Alkorta
  • Carlos Garbisu
  • María J. Llama
  • Juan L. Serra
Original Articles


Continuous β-transelimination of citrus pectin was achieved using pectin lyase [PNL, poly(methoxygalacturonide)lyase, EC] purified fromPenicillium italicum and confined in a membrane reactor. Various operational parameters, such as enzyme and substrate concentrations, filtrate flowrate, and reaction volume were optimized. Kinetic studies indicated that β-transelimination of pectin in the continuous reactor occurred following a first-order reaction with respect to substrate concentration for up to 90 min at 1 mg/mL pectin. This time period could be extended up to 120 min when the reactor was fed with 3–4 mg/mL pectin. During the first 50 h of operation, the system was capable of maintaining a viscosity reduction of 55% below the initial value when it was continuously fed with 4 mg/mL pectin.

Index Entries

Pectin lyase EC β-transelimination citrus pectin membrane reactor Penicillium italicum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lozano, P., Manjón, A., Iborra, J. L., Cánovas, M., and Romojaro, F. (1990),Enzyme Microb. Technol. 12, 499–505.CrossRefGoogle Scholar
  2. 2.
    Kminková, M. and Kucera, J. (1982),Enzyme Microb. Technol. 5, 204–208.CrossRefGoogle Scholar
  3. 3.
    Chang, H. N. and Furusaki, S. (1991),Adv. Biochem. Eng. Biotechnol. 44, 28–64.Google Scholar
  4. 4.
    Molinari, R., Drioli, E., and Barbieri, G. (1988),J. Membrane Sci. 36, 525–534.CrossRefGoogle Scholar
  5. 5.
    Alaña, A., Alkorta, L., Dominguez, J. B., Llama, M. J., and Serra, J. L. (1990),Appl. Environ. Microbiol. 56, 3755–3759.Google Scholar
  6. 6.
    Alaña, A., Llama, M. J., and Serra, J. L. (1991),FEBS Lett. 280, 335–340.CrossRefGoogle Scholar
  7. 7.
    Dische, Z. (1947),J. Biol. Chem. 167, 189–198.Google Scholar
  8. 8.
    Dietz, J. H. and Rouse, A. H. (1953),Food Res. 18, 169–177.Google Scholar
  9. 9.
    Albersheim, P. and Killias, U. (1962),Arch. Biochem. Biophys. 97, 107–115.CrossRefGoogle Scholar
  10. 10.
    Nakajima, M., Shoji, T., and Nabetani, H. (1992),Process Biochem. 27, 155–160.CrossRefGoogle Scholar
  11. 11.
    Mannheim, A. and Cheryan, M. (1990),J. Food Sci. 55, 381–385.CrossRefGoogle Scholar
  12. 12.
    Nakajima, M., Iwasaki, K., Nabetani, H., and Watanabe, A. (1990),Agric. Biol. Chem. 54, 2793–2799.Google Scholar
  13. 13.
    Iborra, J. L., Obón, J. M., Guardiola, J., Manjón, A., and Cánovas, M. (1992),Process Biochem. 27, 339–346.CrossRefGoogle Scholar
  14. 14.
    Iborra, J. L., Obón, J. M., Manjón, A., and Cánovas, M. (1992),Biotechnol. Appl. Biochem. 15, 22–30.Google Scholar
  15. 15.
    Schmidt-Steffen, A. and Staude, E. (1992),Biotechnol. Bioeng. 39, 725–731.CrossRefGoogle Scholar
  16. 16.
    Sims, K. A. and Cheryan, M. (1992),Biotechnol. Bioeng. 39, 960–967.CrossRefGoogle Scholar
  17. 17.
    Nakajima, M., Jimbo, N., Nishizawa, K., Nabetani, H., and Watanabe, A. (1988),Process Biochem. 22, 32–35.Google Scholar
  18. 18.
    Denis, S., Terré, S., Bertheau, Y., and Boyaval, P. (1990),Biotechnol. Techniques 4, 127–132.CrossRefGoogle Scholar
  19. 19.
    Nakajima, M., Nishizawa, K., and Nabetani, H. (1993),Bioproc. Eng. 9, 31–35.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Itziar Alkorta
    • 1
  • Carlos Garbisu
    • 1
  • María J. Llama
    • 1
  • Juan L. Serra
    • 1
  1. 1.Departamento de Bioquímica y Biología Molecular, Facultad de CienciasUniversidad del País VascoBilbaoSpain

Personalised recommendations