Advertisement

Applied Biochemistry and Biotechnology

, Volume 55, Issue 3, pp 241–247 | Cite as

Effect of initial phosphate concentration on cell growth and ginsenoside saponin production by suspended cultures of panax notoginseng

  • Jian-Jiang Zhong
  • Qiu-Xiang Zhu
Original Articles

Abstract

Effects of initial phosphate concentration on the growth, ginsenoside saponin production, and the consumption of sugar and nitrogen sources by suspended cells ofPanax notoginseng (Burk) F. H. Chen were investigated in a 250-mL shake flask. The results indicate that by increasing the initial phosphate concentration in the medium in the range of 0–1.25 mM, both the cell growth and the saponin accumulation were greatly improved, and the utilization of sugar and nitrogen sources was also increased. The highest production, productivity, and yield of ginsenosides obtained were 0.98 g/L, 45.5 mg/L/d, and 0.030 g/g at 1.25 mM of initial medium phosphate. At a relatively higher level of medium phosphate, i.e., 2.0 mM, the product accumulation was inhibited to some degree, although the cell growth was not.

Index Entries

Cell growth ginsenoside saponin initial phosphate concentration nutrient utilization Panax notoginseng plant cell culture secondary metabolite production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wei, J. X. and Du, Y. Z. (1992),Natl. Prod. Res. Dev. 4, 94–100 (Chin.).Google Scholar
  2. 2.
    Ando, T., Tanaka, O., and Shibata, S. (1971),Shoyakagaku Zasshi 25(1), 28–32 (Jpn.).Google Scholar
  3. 3.
    Yunnan Bot. Inst. (1975),Acta Phytotaxon. Sin. 13, 29–44 (Chin.).Google Scholar
  4. 4.
    Zhang, G. D., Zhou, Z. H., Wang, M. Z., and Gao, F. Y. (1980),Acta Pharm. Sin. 15, 175–181 (Chin.).Google Scholar
  5. 5.
    Loo, S. W., Huang, W. H., Cao, G. Y., and Yu, R. C. (1964),Plant Physiol. Commun. 1964(2), 26, 28 (Chin.).Google Scholar
  6. 6.
    Furuya, T., Yoshikawa, T., Orihara, Y., and Oda, H. (1984),J. Natl. Prod. 47, 70–75.CrossRefGoogle Scholar
  7. 7.
    Asada, I., Ii, I., Hirotani, M., Asada, Y., and Furuya, T. (1993),Biotechnol. Lett. 15, 1259–1264.CrossRefGoogle Scholar
  8. 8.
    Zheng, G. Z. and Wang, S. L. (1989),Acta Bot. Yunnan 11, 255–262 (Chin.).Google Scholar
  9. 9.
    Zhou, L. G., Zheng, G. Z., Wang, S. L., Gan, F. Y., and Xu, C. (1992),Acta Bot. Sin. 34, 76–80 (Chin.).Google Scholar
  10. 10.
    Dunlop, D. S. and Curtis, W. R. (1991),Biotechnol. Prog. 7, 434–438.CrossRefGoogle Scholar
  11. 11.
    Liang, S.-Z., Zhong, J.-J., and Yoshida, T. (1991),Industrial Microbiol. 21 (3), 27–31 (Chin.).Google Scholar
  12. 12.
    Panda, A. K., Mishra, S., and Bisaria, V. S. (1992),Biotechnol. Bioeng. 39, 1043–1051.CrossRefGoogle Scholar
  13. 13.
    Payne, J., Hamill, J. D., Robins, R. J., and Rhodes, M. J. C. (1987),Planta Med. 53, 474–478.CrossRefGoogle Scholar
  14. 14.
    Tanaka, H., Takayama, S., Mano, Y., Hayashi, T., and Inoguchi, M. (1992),Shokubutsu Saibou Kogaku (Plant Cell Technology), Omu-sha, Tokyo (Jpn.).Google Scholar
  15. 15.
    Zhong, J.-J., Seki, T., Kinoshita, S., and Yoshida, T. (1991),Biotechnol. Bioeng. 38, 653–658.CrossRefGoogle Scholar
  16. 16.
    Weatherburn, M. W. (1967),Anal. Chem. 39, 971–974.CrossRefGoogle Scholar
  17. 17.
    Chen, P. S., Toribara, T. Y., and Warner, H. (1956),Anal. Chem. 28, 1756–1758.CrossRefGoogle Scholar
  18. 18.
    Martinez, B. C. and Park, C.-H. (1993),Biotechnol. Prog. 9, 97–100.CrossRefGoogle Scholar
  19. 19.
    Zhong, J.-J., Fujiyama, K., Seki, T., and Yoshida, T. (1994),Biotechnol. Bioeng. 44, 649–654.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Jian-Jiang Zhong
    • 1
  • Qiu-Xiang Zhu
    • 1
  1. 1.Research Institute of Biochemical EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations