Applied Biochemistry and Biotechnology

, Volume 55, Issue 3, pp 219–230 | Cite as

Glycosidases in plant tissues of some brassicaceae screening of different cruciferous plants for glycosidases production

  • Sanaa T. El-Sayed
  • Etidal W. Jwanny
  • Mona M. Rashad
  • Abeer E. Mahmoud
  • Nadia M. Abdallah
Original Articles


Glycosidases namely myrosinase and β-amylase, have been isolated fromBrassicaceae. These enzymes were identified and estimated by the rate of glucose and maltose formation from sinigrin (thioglucosinolate) and amylose (polysaccharides) hydrolysis, respectively. Their activities (U/g dry tissues) varied with the different species of the plant and with the different parts of their tissues. Generally, they were higher in the germinated seeds (3.3-8.0 times) than in powdered or defatted powdered dry seeds. The best amylase and myrosinase extracting solution for radish and white mustard germinated seeds was distilled water, and for turnip germinated seeds, it was 0.1M phosphate buffer, pH 6.0. In the light, the optimum germination temperature for amylase production or activation by radish and white mustard seeds was 25°C, and for turnip seeds, it was 30°C, whereas for myrosinase production or activation by radish and turnip, 25–27°C was the optimum temperature.

The highest myrosinase activities in black mustard and radish defatted dry seeds were obtained by extraction with 1% NaCl at 272/30°C and distilled water at 25–27°C, after an incubation period of 4–6 h. Comparative studies indicated that fresh radish roots were the most potent amylase and myrosinase producers compared with radish leaves or roots, stems, and leaves of turnip and cabbage.

Amylase and myrosinase were partially purified from water extracts of fresh radish roots by optimum precipitation with ammonium sulfate (100%). Some physicochemical properties were studied.

Index Entries

Brassicaceae cruciferae radish roots myrosinase (β-thioglucosidase) and β-amylase (1,4-α-D-glucan maltohydrolase) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MacGibbon, D.B. and Allison, R. M. (1970),Phytochemistry 9, 541.CrossRefGoogle Scholar
  2. 2.
    Wilkinson, A. P., Rhodes, M. J. C., and Fenwick, R. G. (1984),J. Sci. Food Agric. 35, 543.CrossRefGoogle Scholar
  3. 3.
    Jwanny, E. W. and El-Sayed, S. T. (1994),App. Biochem. Biotechnol. 48. Google Scholar
  4. 4.
    Pihakaski, K. and Pihakaski, S. (1978),J. Exp. Bot. 29, 335.CrossRefGoogle Scholar
  5. 5.
    Bones, A. and Iversen, T.-H. (1985),Israel J. Bot. 34, 351.Google Scholar
  6. 6.
    Bones, A. M. (1990),J. Exp. Bot. 41, 737.CrossRefGoogle Scholar
  7. 7.
    Chapman, Jr., G. W., Pallas, J. E., Jr., and Mendicino, J. (1972),Bichem. Biophys. Acta 276, 491.Google Scholar
  8. 8.
    Okamato, K. and Akazawa, T. (1978),Plant Physiol. 63, 336.CrossRefGoogle Scholar
  9. 9.
    Rashad, M. M., El-Sayed, S. T., and Hashem, A. M. (1993),Bull. Fac. Pharm. Cairo Univ. 31, 165.Google Scholar
  10. 10.
    El-Sayed, S. T. (1994),Bull. Fac. Pharm. Cairo Univ. 33. Google Scholar
  11. 11.
    Daussant, J., Mayer, C., and Renard, H. A. (1980),Cereal Res. Commun. 8, 49.Google Scholar
  12. 12.
    Manner, D. J. (1985), inBiochemistry of Storage Carbohydrates in Green Plants, Dey, P. M. and Dixon, R. A., eds., Academic, New York, pp. 149.Google Scholar
  13. 13.
    Sharma, R. and Schopfer, P. (1982),Planta 155, 183.CrossRefGoogle Scholar
  14. 14.
    Subbaramaiah, K. and Sharma, R. (1987),J. Chromatogr. 390, 463.CrossRefGoogle Scholar
  15. 15.
    Thies, W. L. (1988),Fat. Sci. Technol. 90, 311.Google Scholar
  16. 16.
    Somogyi, M. (1952),J. Biol. Chem. 195, 19.Google Scholar
  17. 17.
    Nelson, N. (1994),J. Biol. Chem. 153, 375.Google Scholar
  18. 18.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265.Google Scholar
  19. 19.
    Ettlinger, M. G. and Kjaer, A. (1968), inRecent Advances in Phytochemistry, Mabry, T. J., Alston, R. E., and Runeckles, V. C., eds., Appleton, Century, Crofts, New York.Google Scholar
  20. 20.
    Okamoto, K. and Akazawa, T. (1978),Agric. Biol. Chem. 42, 1379.Google Scholar
  21. 21.
    McGregor, D. I. (1988),Can. J. Plant Sci. 68, 367.CrossRefGoogle Scholar
  22. 22.
    Rowsell, E. V. and Goad, L. J. (1962),Biochem. J. 84, 73p.Google Scholar
  23. 23.
    Jacobsen, J. V. and Varner, J. E. (1967),Plant Physiol. 42, 1596.Google Scholar
  24. 24.
    Tronier, B. and Ory, R. L. (1970),Cereal Chem. 47, 464.Google Scholar
  25. 25.
    Subbaramaiah, K. and Sharma, R. (1989),Plant Physiol. 89, 860.Google Scholar
  26. 26.
    Henderson, H. M. and McEwen, T. J. (1972),Phytochemistry 11, 3127.CrossRefGoogle Scholar
  27. 27.
    Palmieri, S., Iori, R., and Leoni, O. (1986),J. Agr. Food Chem. 34, 138.CrossRefGoogle Scholar
  28. 28.
    Bjorkman, R. and Lonnerdal, B. (1973),Biochem. Biophys. Acta 327, 121.Google Scholar
  29. 29.
    Shi-Ching, H., Jong-Ching, S., and Hsien-Yi, S. (1977),Chung-Kuo Nung Yeh Hua Hsuch Hui Chin 15, 32.Google Scholar
  30. 30.
    Ettlinger, M. G., Dateo, G. P., Harrison, B. W., Marby, T., and Thompson, C. P. (1961),Proc. Natl. Acad. Sci. 47, 1875.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Sanaa T. El-Sayed
    • 1
  • Etidal W. Jwanny
    • 1
  • Mona M. Rashad
    • 1
  • Abeer E. Mahmoud
    • 1
  • Nadia M. Abdallah
    • 2
  1. 1.Biochemistry DepartmentNational Research CenterEgypt
  2. 2.Biochemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations