Journal d’Analyse Mathématique

, Volume 8, Issue 1, pp 337–360 | Cite as

Variation diminishing transformations and ultraspherical polynomials

  • I. I. Hirschman


Group Algebra Inversion Formula Positive Sequence Lebesgue Dominate Convergence Theorem Approximation Argument 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Aissen, I. J. Schoenberg and A. Whitney, “On the generating function of totally positive sequences 1”,Jour. d'Analyse Math., vol. 2 (1952), pp. 93–103.MATHMathSciNetGoogle Scholar
  2. [2]
    S. Bochner, “Harmonic Analysis and the Theory of Probability”, California University Press, 1955.Google Scholar
  3. [3]
    S. Bochner, “Sturm-Liouville and heat equations whose eigen values are ultraspherical polynomials or associated Bessel functions”, Proc. of the Conference on Differential Equations, University of Maryland, 1955.Google Scholar
  4. [4]
    A. Edrei, “On the generating functions of totally positive sequences, II”,Jour. d'Analyse Math. vol. 2 (1952), pp. 104–109.MATHMathSciNetGoogle Scholar
  5. [5]
    A. Edrei, “On the generating function of a doubly infinite totally positive sequence”,Trans. Amer. Math. Soc., vol. 74 (1953), pp. 367–383.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Erdélyi et al., “Higher Transcendental Functions”, New, York, 1953.Google Scholar
  7. [7]
    I. I. Hirschman, Jr., “Harmonic analysis and ultraspherical polynomials”, Symposium on Harmonic Analysis and Related Integral Transforms, Cornell Univ. (1955).Google Scholar
  8. [8]
    I. I. Hirschman, Jr., “Variation diminishing Hankel transforms”,Journal d'Analyse Math., This volume, pp. 307–336.Google Scholar
  9. [9]
    I. I. Hirschman, Jr, and D. V. Widder “The Convolution Transform”, Princeton, 1955.Google Scholar
  10. [10]
    H.-Y. Hsü, “Certain integrals and infinite series involving ultraspherical polynomials and Bessel functions”,Duke Math. Jour., vol. 4 (1938), pp. 374–383.MATHCrossRefGoogle Scholar
  11. [11]
    G. Pólya and G. Szegö, “Aufgaben und Lehrsätze aus der Analysis”, Berlin, 1925.Google Scholar
  12. [12]
    I. J. Schoenberg, “On Pólya frequency functions, I”,Jour. d'Analyse Math., vol. 1 (1951), pp. 331–374.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    I. J. Schoenberg, “On Pólya frequency functions, II”,Acta Scientiarum Mathematicarum Szeged”, vol. 12 (1950).Google Scholar
  14. [14]
    I. J. Schoenberg, “Some analytical aspects of the problem of smoothing”, Courant Anniversary Volume, New York, 1948, pp. 351–370.Google Scholar
  15. [15]
    G. Szegö, “Orthogonal Polynomials”, New York, 1939.Google Scholar
  16. [16]
    A. Whitney, “A reduction theorem for totally positive matrices”,Jour. d'Analyse Math., vol. 2 (1952), pp. 88–92.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1960

Authors and Affiliations

  • I. I. Hirschman
    • 1
  1. 1.Department of MathematicsWashington UniversitySaint LouisU.S.A.

Personalised recommendations