Journal d’Analyse Mathématique

, Volume 8, Issue 1, pp 337–360 | Cite as

Variation diminishing transformations and ultraspherical polynomials

  • I. I. Hirschman


Group Algebra Inversion Formula Positive Sequence Lebesgue Dominate Convergence Theorem Approximation Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Aissen, I. J. Schoenberg and A. Whitney, “On the generating function of totally positive sequences 1”,Jour. d'Analyse Math., vol. 2 (1952), pp. 93–103.MATHMathSciNetGoogle Scholar
  2. [2]
    S. Bochner, “Harmonic Analysis and the Theory of Probability”, California University Press, 1955.Google Scholar
  3. [3]
    S. Bochner, “Sturm-Liouville and heat equations whose eigen values are ultraspherical polynomials or associated Bessel functions”, Proc. of the Conference on Differential Equations, University of Maryland, 1955.Google Scholar
  4. [4]
    A. Edrei, “On the generating functions of totally positive sequences, II”,Jour. d'Analyse Math. vol. 2 (1952), pp. 104–109.MATHMathSciNetGoogle Scholar
  5. [5]
    A. Edrei, “On the generating function of a doubly infinite totally positive sequence”,Trans. Amer. Math. Soc., vol. 74 (1953), pp. 367–383.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Erdélyi et al., “Higher Transcendental Functions”, New, York, 1953.Google Scholar
  7. [7]
    I. I. Hirschman, Jr., “Harmonic analysis and ultraspherical polynomials”, Symposium on Harmonic Analysis and Related Integral Transforms, Cornell Univ. (1955).Google Scholar
  8. [8]
    I. I. Hirschman, Jr., “Variation diminishing Hankel transforms”,Journal d'Analyse Math., This volume, pp. 307–336.Google Scholar
  9. [9]
    I. I. Hirschman, Jr, and D. V. Widder “The Convolution Transform”, Princeton, 1955.Google Scholar
  10. [10]
    H.-Y. Hsü, “Certain integrals and infinite series involving ultraspherical polynomials and Bessel functions”,Duke Math. Jour., vol. 4 (1938), pp. 374–383.MATHCrossRefGoogle Scholar
  11. [11]
    G. Pólya and G. Szegö, “Aufgaben und Lehrsätze aus der Analysis”, Berlin, 1925.Google Scholar
  12. [12]
    I. J. Schoenberg, “On Pólya frequency functions, I”,Jour. d'Analyse Math., vol. 1 (1951), pp. 331–374.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    I. J. Schoenberg, “On Pólya frequency functions, II”,Acta Scientiarum Mathematicarum Szeged”, vol. 12 (1950).Google Scholar
  14. [14]
    I. J. Schoenberg, “Some analytical aspects of the problem of smoothing”, Courant Anniversary Volume, New York, 1948, pp. 351–370.Google Scholar
  15. [15]
    G. Szegö, “Orthogonal Polynomials”, New York, 1939.Google Scholar
  16. [16]
    A. Whitney, “A reduction theorem for totally positive matrices”,Jour. d'Analyse Math., vol. 2 (1952), pp. 88–92.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1960

Authors and Affiliations

  • I. I. Hirschman
    • 1
  1. 1.Department of MathematicsWashington UniversitySaint LouisU.S.A.

Personalised recommendations