Journal d’Analyse Mathématique

, Volume 30, Issue 1, pp 355–371 | Cite as

On the natural frequencies of a hollow cylinder for acoustical and electrical excitations

  • Harold Levine


Hollow Cylinder Trial Function Electrical Excitation Acoustical Excitation Pressure Discontinuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abraham, Ann. Physik66 (1898), 435.CrossRefGoogle Scholar
  2. 2.
    M. Brillouin,Propagation de l’électricité, Hermann, Paris, 1904.MATHGoogle Scholar
  3. 3.
    H. Lamb,The Dynamical Theory of Sound, 2nd ed., Arnold, London, 1931.Google Scholar
  4. 4.
    H. C. Pocklington,Proc. Cambridge Philos. Soc. 9 (1897), 324.Google Scholar
  5. 5.
    Lord Rayleigh, Proc. Roy. Soc. A.87 (1912), 193.CrossRefGoogle Scholar
  6. 6.
    S. A. Schelkunoff,Advanced Antenna Theory, John Wiley, New York, 1952.MATHGoogle Scholar
  7. 7.
    J. J. Thomson, Proc. London Math. Soc. (1)15 (1884), 197.CrossRefGoogle Scholar
  8. 8.
    F. H. van den Dungen, Acad. Royale Belgique, Classe des Sciences, Méms.12 (1) (1938).Google Scholar

Copyright information

© Hebrew University of Jerusalem 1976

Authors and Affiliations

  • Harold Levine
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations