Skip to main content
Log in

Asymptotic behaviour of multiperiodic functions scaled by Pisot numbers

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

Let β > 1 be a Pisot number andg be a positive Hölder continuous function with period one and g(0) = 1. The multiperiodic functionG(ξ)=Π n=0 g(ξ/βn) is studied and the asymptotic behaviour ofI G(T) = ∫ T0 G(ξ)dξ investigated. We prove that the limit of logI(T)/ logT exists asT tends to infinity. We also provide a method to calculate this limit for the caseg(ξ) = cos2 2πξ, corresponding to the Fourier transform of the Bernoulli convolution associated to the golden number (or some of its generalizations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Blanchard,β-expansions and symbolic dynamics, Theoret. Comput. Sci.8 (1989), 131–141.

    Article  MathSciNet  Google Scholar 

  2. A. Cohen and I. Daubechies,A stability criterion for biorthogonal wavelet bases and their related subband coding scheme, Duke Math. J.68 (1992), 313–335.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Daubechies,Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math.41 (1988), 909–996.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Daubechies,Ten Lectures on Wavelets, CBMS Regional Conf. Ser. in Appl. Math., Vol. 61, SIAM, Philadelphia, 1992.

    Google Scholar 

  5. A. H. Fan,Multifractal analysis of infinite products, J. Statist. Phys.,86, Nos. 5/6 (1997), 1313–1336.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. H. Fan and K. S. Lau,Asymptotic behavior of multiperiodic functions G({x})=Π n=1 g(x/2n), J. Fourier Anal. Appl.4 (1998), 129–150.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Fouvry and C. Mauduit,Sommes des chiffres et nombres presque premiers, Math. Ann.305 (1996), 305–599.

    Article  MathSciNet  Google Scholar 

  8. E. Fouvry and C. Mauduit,Méthodes de crible et fonctions sommes des chiffres, Acta Arith.77, No. 4 (1996), 339–351.

    MATH  MathSciNet  Google Scholar 

  9. A. M. Garsia,Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409–432.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Janardhan, D. Rosenblum and R. Strichartz,Numerical experiments in Fourier asymptotics of Cantor measures and wavelets, Experiment. Math.1, No. 4 (1992), 249–273.

    MATH  MathSciNet  Google Scholar 

  11. J. P. Kahane,Sur la distribution de certaines series aléatoires, Colloque Th. Nombres [1969, Bordeaux], Bull. Soc. Math. France, Mémoire25 (1971), 119–122.

    MATH  MathSciNet  Google Scholar 

  12. K. S. Lau,Dimension of a family of singular Bernoulli convolutions, J. Funct. Anal.116 (1993), 335–358.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. S. Lau, M. F. Ma and J. Wang,On some sharp regularity estimations of L 2-scaling functions, SIAM J. Math. Anal.27 (1996), 835–864.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. S. Lau and S. M. Ngai,L q-spectrum of Bernoulli convolutions associated with P.V. numbers, Osaka J. Math.36 (1999), 993–1010.

    MATH  MathSciNet  Google Scholar 

  15. K. S. Lau and J. Wang,Mean quadratic variations and Fourier asymptotics of self-similar measures, Monatsh. Math.115 (1993), 99–132.

    Article  MATH  MathSciNet  Google Scholar 

  16. I. G. Macdonald,Symmetric Functions and Hall Polynomials, Oxford University Press, 1979.

  17. W. Parry,On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar.11 (1960), 401–416.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Peres, W. Schlag and B. Solomyak,Sixty years of Bernoulli convolutions, inFractal Geometry and Stochastics 11 (Ch. Bandt, S. Graf and M. Zaehle, eds.), Progress in Probability, Vol. 46, Birkhäuser, Boston, 2000, pp. 39–65.

    Google Scholar 

  19. A. Rényi,Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar.8 (1957), 477–493.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Ruelle,Thermodynamic formalism: the mathematical structures of classical equilibrium statistical mechanics, inEncyclopedia of Mathematics and its Applications, Vol. 5, Addison-Wesley, Reading, Massachusetts, 1978.

    Google Scholar 

  21. R. Strichartz,Self-similar measures and their Fourier transforms II, Trans. Amer. Math. Soc.336 (1993), 335–361.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Strichartz,Self-similarity in harmonic analysis, J. Fourier Anal. Appl.1 (1994), 1–37.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Strichartz,Mock Fourier series and transforms associated with certain Cantor measures, J. Analyse Math.81 (2000), 209–238.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Strichartz and N. Tillman,Sampling theory for functions with fractal spectrum, preprint.

  25. P. Walters,An Introduction to Ergodic Theory, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Hua Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, A.H. Asymptotic behaviour of multiperiodic functions scaled by Pisot numbers. J. Anal. Math. 86, 271–287 (2002). https://doi.org/10.1007/BF02786652

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786652

Keywords

Navigation