Journal d’Analyse Mathématique

, Volume 13, Issue 1, pp 391–397 | Cite as

Integral equations involving a confluent hypergeometric function as kernel

  • K. N. Srivastava


Positive Integer Integral Equation Partial Differential Equation Functional Analysis Harmonic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Buschman, An inversion integral for a Legendre transformation,Amer. Math. Monthly 69 (1962) 288–289.MATHCrossRefGoogle Scholar
  2. 2.
    R. G. Buschman, An inversion integral,Proc. Amer. Math. Soc,13 (1962) 675–677.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Erdelyi,An integral equation involving Legendre’s polynomial, Amer. Math. Monthly 70 (1963) 651–652.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Erdelyi, Tables of integral transforms, vol. 2 (McGraw-Hill, New york 1954).Google Scholar
  5. 5.
    K. N. Srivastava, A class of integral equations involving ultraspherical polynomials as kernel,Proc. Amer. Math. Soc.,14 (1963), 932–940.CrossRefMathSciNetGoogle Scholar
  6. 6.
    K. N. Srivastava, Inversion integral involving Jacobi’s polynomials,Proc. Amer. Math. Soc. 15 (1964) (in press).Google Scholar
  7. 7.
    Ta Li, A new class of integral transforms,Proc. Amer. Math. Soc.,11 (1960) 290–298.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. V. Widder, The convolution transform whose kernel is a Laguerre polynomial,Amer. Math. Monthly 70 (1963) 291–293.CrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1964

Authors and Affiliations

  • K. N. Srivastava
    • 1
  1. 1.Department of MathematicsM. A. College of TechnologyBhopal (M. P.)India

Personalised recommendations