Skip to main content
Log in

Mappings ofBMO-distortion and beltrami-type operators

  • Published:
Journal d’Analyse Mathématique Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. L. V. Ahlfors,Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, 1966; reprinted by Wadsworth Inc., Belmont, 1987.

    MATH  Google Scholar 

  2. L. V. Ahlfors and A. Beurling,Conformal invariants and function theoretic null sets, Acta Math.83 (1950), 101–129.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. S. Antman,Fundamental mathematical problems in the theory of nonlinear elasticity, inNumerical Solution of Partial Differential Equations, III, Academic Press, New York, 1976, pp. 35–54.

    Google Scholar 

  4. K. Astala, P. Koskela, T. Iwaniec and G. Martin,Mappings of BMO-bounded distortion II, Math. Ann.317 (2000), 703–726.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. M. Ball,Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977), 337–403.

    MATH  Google Scholar 

  6. M. A. Brakalova and J. A. Jenkins,On solutions of the Beltrami equation, J. Analyse Math.76 (1998), 67–92.

    MATH  MathSciNet  Google Scholar 

  7. R. R. Coifman and L. Grafkos,Hardy space estimates for multilinear operators, 1, Rev. Mat. Iberoamericana8 (1992), 45–67.

    MATH  MathSciNet  Google Scholar 

  8. R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes,Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993), 247–286.

    MATH  MathSciNet  Google Scholar 

  9. R. R. Coifman and R. Rochberg,Another characterization of BMO, Proc. Amer. Math. Soc.79 (1980), 249–254.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. R. Coifman, R. Rochberg and G. WeissFactorization theorems for Hardy spaces in several variables, Ann. of Math.103 (1978), 569–645.

    MathSciNet  Google Scholar 

  11. G. David,Solutions de l’equation de Beltrami avec Μ = 1. Ann. Acad. Sci. Fenn. Ser. A I Math.13 (1988), 25–70.

    MATH  MathSciNet  Google Scholar 

  12. S. Donaldson and D. Sullivan,Quasiconformal 4-manifolds, Acta Math.163 (1989), 181–252.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. C. Evans and R. F. Gariepy,Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.

    MATH  Google Scholar 

  14. C. Fefferman,Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc.77 (1971), 587–588.

    MATH  MathSciNet  Google Scholar 

  15. F. W. Gehring,The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math.130 (1973), 265–277.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. W. Gehring and O. Lehto,On the total differentiability of functions of a complex variable, Ann. Acad. Sci. Fenn. AI272 (1959), 3–9.

    MathSciNet  Google Scholar 

  17. V. M. Goldstein and S. K. Vodop’yanov,Quasiconformal mappings and spaces of functions with generalised first derivatives, Sb. Mat. Z.17 (1976), 515–531.

    Google Scholar 

  18. L. Grafkos,Hardy space estimates for multilinear operators, II, Rev. Mat. Iberoamericana8 (1992), 69–92.

    MathSciNet  Google Scholar 

  19. L. Greco,A remark on the equality det Df = Det Df, Differential Integral Equations6 (1993), 1089–1100.

    MATH  MathSciNet  Google Scholar 

  20. L. Greco, T. Iwaniec and G. Moscariello,Limits of the improved integrability of the volume forms, Indiana Univ. Math. J.44 (1995), 305–339.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Heinonen and P. KoskelaSobolev mappings with integrable distortion, Arch. Rational Mech. Anal.125 (1993), 81–97.

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Iwaniec,p-Harmonic tensors and quasiregular mappings, Ann. of Math.136 (1992), 651–685.

    Article  MathSciNet  Google Scholar 

  23. T. Iwaniec,Integrability theory of Jacobians, Lipschitz Lectures, Preprint #36, Sonderforschungsbereich256, Bonn, 1995.

  24. T. Iwaniec,The Gehring Lemma, inQuasiconformal Mappings and Analysis, A collection of papers honoring F. W. Gehring (P. Duren, J. Heinonen, B. Osgood and B. Palka, eds.), Springer-Verlag, Berlin, 1998, pp. 181–204.

    Google Scholar 

  25. T. Iwaniec, P. Koskela and J. Onninen,Mappings of finite distortion: Monotonicity and continuity, Invent. Math.144 (2001), 507–531.

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Iwaniec, P. Koskela and J. Onninen,Mappings of finite distortion: Compactness, Ann. Acad. Sei. Fenn. Ser. A I Math., to appear.

  27. T. Iwaniec, P. Koskela, G. J. Martin and C. Sbordone,Mappings of finite distortion: Ln logαL-integrability, Bull. London Math. Soc, to appear.

  28. T. Iwaniec and A. Lutoborski,Integral estimates for null Lagrangians, Arch. Rational Mech. Anal.125 (1993), 25–79.

    Article  MATH  MathSciNet  Google Scholar 

  29. T. Iwaniec and G. J. Martin,Quasiregular mappings in even dimensions, Acta Math.170 (1993), 29–81.

    Article  MATH  MathSciNet  Google Scholar 

  30. T. Iwaniec and G. J. Martin,Riesz transforms and related singular integrals, J. Reine Angew. Math.473 (1993), 29–81.

    Google Scholar 

  31. T. Iwaniec and G. J. Martin,The Beltrami Equation, Mem. Amer. Math. Soc, to appear.

  32. T. Iwaniec and G. J. Martin,Squeezing the Sierpinski Sponge, Studia Math.149 (2002), 133–145.

    Article  MATH  MathSciNet  Google Scholar 

  33. T. Iwaniec and G. J. Martin,Geometric Function Theory and Non-linear Analysis, Oxford University Press, 2001.

  34. T. Iwaniec, L. Migliaccio, L. Nania and C. Sbordone,Integrability and removability results for quasiregular mappings in high dimensions, Math. Scand.75 (1994), 263–279.

    MATH  MathSciNet  Google Scholar 

  35. T. Iwaniec and C. Sbordonne,On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal.119 (1992), 129–143.

    Article  MATH  MathSciNet  Google Scholar 

  36. T. Iwaniec and C. Sbordonne,Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001), 519–572.

    Article  MATH  Google Scholar 

  37. T. Iwaniec and V. šverák,On mappings with integrable dilatation, Proc. Amer. Math. Soc.118 (1993), 181–188.

    Article  MATH  MathSciNet  Google Scholar 

  38. T. Iwaniec and A. Verde,A study of Jacobians in Hardy-Orlicz spaces Proc. Edinburgh Math. Soc.129 (1999), 539–570.

    MATH  MathSciNet  Google Scholar 

  39. F. John and L. Nirenberg,On functions of bounded mean oscillation, Comm. Pure Appl. Math.14 (1961), 415–426.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. Kauhanen, P. Koskela and J. Malý,Mappings of finite distortion: Discreteness and openeness, Arch. Rational Mech. Anal.160 (2001), 135–151.

    Article  MATH  Google Scholar 

  41. J. Kauhanen, P. Koskela and J. Malý,Mappings of finite distortion: Condition N, Michigan Math. J.49 (2001), 169–181.

    MATH  MathSciNet  Google Scholar 

  42. J. Manfredi and E. Villamor,Mappings with integrable dilatation in higher dimensions, Bull. Amer. Math. Soc.32 (1995), 235–240.

    MATH  MathSciNet  Google Scholar 

  43. O. Martio, S. Rickman and J. VÄisÄlÄ,Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I448 (1969), 1–40.

    Google Scholar 

  44. V. G. Maz’ja,Sobolev Spaces, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  45. L. Migliaccio and G. Moscariello,Mappings with unbounded dilatation. Preprint, no. 3, DIIMA, Università di Salerno, 1997.

  46. G. Moscariello,On the integrability of the Jacobian in Orlicz spaces, Math. Japon.40 (1992), 323–329.

    MathSciNet  Google Scholar 

  47. S. Müller,A surprising higher integrability property of mappings with positive Jacobians, Bull. Amer. Math. Soc.21 (1989), 245–248.

    MATH  MathSciNet  Google Scholar 

  48. M. M. Rao and Z. D. Ren,Theory of Orlicz Spaces, Pure Appl. Math. 146, Wiley, New York, 1991.

    Google Scholar 

  49. M. Reimann,Functions of bounded mean oscillation and quasiconformal mappings Comment. Math. Helv.49 (1974), 260–276.

    Article  MATH  MathSciNet  Google Scholar 

  50. Yu. G. Reshetnyak,Space Mappings with Bounded Distortion, Transl. Math. Monographs73, Amer. Math. Soc., Providence, RI, 1989.

  51. S. Rickman,Quasiregular Mappings, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  52. J. W. Robin, R. C. Rogers and B. Temple,On weak continuity and Hodge decomposition, Trans. Amer. Math. Soc.303 (1987), 609–618.

    Article  MathSciNet  Google Scholar 

  53. V. Ryazanov, U. Srebro and E. Yacubov,BMO-quasiregular mappings, J. Analyse Math.83 (2001), 1–20.

    MATH  Google Scholar 

  54. E. Stein,Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993.

  55. P. Tukia,Compactness properties of Μ-homeomorphisms, Ann. Acad. Sci. Fenn. Ser. A I Math.16 (1991), 47–69.

    MathSciNet  Google Scholar 

  56. J. VÄisÄlÄ,Two new characterizations for quasiconformality, Ann. Acad. Sci. Fenn. Ser. A I Math.362 (1965), 1–12.

    Google Scholar 

  57. S. Wu,On the higher integrability of nonnegative Jacobians, Comptes Rendus Acad. Sci. Paris, to appear.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Iwaniec.

Additional information

Research of all authors supported in part by grants from the N.Z. Marsden Fund. Also the U.S. National Science Foundation (TI), DMS-0070807 and the Academy of Finland (PK), SA-34082.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwaniec, T., Koskela, P. & Martin, G. Mappings ofBMO-distortion and beltrami-type operators. J. Anal. Math. 88, 337–381 (2002). https://doi.org/10.1007/BF02786581

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786581

Keywords

Navigation