International Journal of Pancreatology

, Volume 14, Issue 2, pp 157–166 | Cite as

Pancreatic trophism in experimental liver cirrhosis

  • István Nagy
  • Ferenc Hajnal
  • Gábor Mohácsi
  • József Németh
  • Zoltán Lászik
  • Ákos Pap


Pancreatic trophism and pancreatic enzyme composition, and plasma levels of cholecystokinin, insulin, glucagon, and glucose in liver cirrhosis induced by chronic thioacetamide administration (0.02% in the drinking water for 12 mo) were studied in rats. Advanced liver cirrhosis was evident in all thioacetamide-treated rats. The weight of the pancreas and its contents of DNA, protein, trypsinogen, chymotrypsinogen, proelastase, secretory trypsin inhibitor, and amylase were significantly increased as compared to the controls. The pancreatic secretory enzyme content changes showed a nonparallelism, characteristic of a cholecystokinin effect. Light and electron microscopy revealed a normal pancreatic architecture. Bioassayed plasma cholecystokinin levels in both fed and 24-h-fasted cirrhotic rats were significantly higher than in the corresponding controls. The plasma glucose, insulin, and glucagon levels demonstrated hypoglycemic tendencies with a glucagon predominance. These findings indicate that advanced liver cirrhosis in the rat is accompanied by pancreatic hypertrophy and hyperplasia, which might be attributed, at least in part, to elevated circulating cholecystokinin levels.

Key words

Thioacetamide liver cirrhosis pancreas rats cholecystokinin insulin glucagon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nagy I, Pap Á, Hajnal F. Pancreatic hypertrophy and hyperplasia associated with elevated circulating CCK levels in experimental liver cirrhosis [Abstract].Digestion 1989; 43: 165.Google Scholar
  2. 2.
    Van Goidsenhoven GE, Henke WJ, Vacca JB, Knight WA. Pancreatic function in cirrhosis of the liver.Am J Dig Dis 1963; 8: 160–173.CrossRefGoogle Scholar
  3. 3.
    Dreiling DA, Greenstein AJ, Bordalo C. The hypersecretory states of the pancreas.Gastroenterology 1973; 75: 1083–1089.Google Scholar
  4. 4.
    Justus PG, Wheeldon SG, Kolts BE. Secretin half-life in cirrhotics with high secretory volumes to a secretin test.Proc Soc Exp Biol Med 1979; 162: 351–353.PubMedGoogle Scholar
  5. 5.
    Renner IG, Rinderknecht H, Wisner JR. Pancreatic secretion after secretin and cholecystokinin stimulation in chronic alcoholics with and without cirrhosis.Dig Dis Sci 1983; 28: 1089–1093.PubMedCrossRefGoogle Scholar
  6. 6.
    Pap Á, Varró V. Pancreatic amylase and protein concentrations associated with thioacetamide-induced cirrhosis of the liver in rats.Acta Med Acad Sci Hung 1978; 35: 311–316.PubMedGoogle Scholar
  7. 7.
    Berger Z, Pap Á, Ungi I, Varró V. Inactivation of cholecystokinin octapeptide by normal and cirrhotic liver in rats.Int J Pancreatol 1986; 1: 279–289.PubMedGoogle Scholar
  8. 8.
    Debas HT, Grossman MI. Hepatic inactivation of gastrointestinal hormones, inProceedings of the Fifth World Congress of Gastroenterology, Mexico City, 1974; p. 494.Google Scholar
  9. 9.
    Lonovics J, Hajnal F, Suddith RL, Rayford PL, Thompson JC. Metabolism of different molecular forms of cholecystokinin, inAdvances in Physiological Science, Vol. 12, Nutrition, Digestion, Gáti T, Szollár LG, Ungváry G, eds., Akadémia, Budapest, 1981; 383–390.Google Scholar
  10. 10.
    Doyle JW, Wolfe MM, McGuigan JE. Hepatic clearance of gastrin and cholecystokinin peptides.Gastroenterology 1984; 87: 60–68.PubMedGoogle Scholar
  11. 11.
    Eysselein VE, Böttcher W, Kaufmann GL Jr, Walsh JH. Molecular heterogeneity of canine cholecystokinin in portal and peripheral plasma.Regul Pept 1984; 9: 173–185.PubMedCrossRefGoogle Scholar
  12. 12.
    Sakamoto T, Fujimura M, Newman J, Zhu XG, Greenley GH, Johnson JC. Comparison of hepatic elimination of different forms of cholecystokinin in dogs. Bioassay and radioimmunoassay comparison of cholecystokinin-8-sulfate and 33-sulfate.J Clin Invest 1985; 75: 280–285.PubMedCrossRefGoogle Scholar
  13. 13.
    Solomon TE. Regulation of exocrine pancreatic cell proliferation and enzyme synthesis, inPhysiology of the Gastrointestinal Tract, Johnson LR, ed., Raven, New York, 1981; 873–892.Google Scholar
  14. 14.
    Fölsch UR. Regulation of pancreatic growth.Clin Gastroenterol 1984; 13: 679–699.PubMedGoogle Scholar
  15. 15.
    Solomon TE. Control of exocrine pancreatic secretion, inPhysiology of the Gastrointestinal Tract, Johnson LR, ed., Raven, New York, 1987; 1173–1209.Google Scholar
  16. 16.
    Himeno S, Tarui S, Kanayama S, Kuroshima T, Shinomura Y, Hayashi C, Tateishi K, Imagawa K, Hashimura E, Hamaoka T. Plasma cholecystokinin responses after ingestion of liquid meal and intraduodenal infusion of fat, amino acids, or hydrochloric acid in man: Analysis with region specific radioimmunoassay.Am J Gastroenterol 1985; 80: 703–707.Google Scholar
  17. 17.
    Kanayama S, Himeno S, Kurokawa M, Shinomura Y, Kuroshima T, Okuno M, Tsuji T, Higashimoto Y, Ikei N, Hashimura E, Tateishi K, Hamaoka T, Tarui S. Marked prolongation in disappearance half-time of plasma cholecytstokinin-octapeptide in patients with hepatic cirrhosis.Am J Gastroenterol 1985; 80: 557–560.PubMedGoogle Scholar
  18. 18.
    Kanayama S, Himeno S, Higashimoto Y, Yamasaki Y, Kitani T, Tarui S. Plasma cholecystokinin-octapeptide like immunoreactivity in patients with hepatic cirrhosis.Life Sci 1987; 41: 1915–1920.PubMedCrossRefGoogle Scholar
  19. 19.
    Gupta DN. Nodular cirrhosis and metastasing tumours produced in the liver of rats by prolonged feeding with thioacetamide.J Path Bact 1956; 72: 415–425.CrossRefGoogle Scholar
  20. 20.
    Hyvärinen A, Nikkilä EA. Specific determination of blood glucose with o-toluidine.Clin Chim Acta 1962; 7: 140–144.PubMedCrossRefGoogle Scholar
  21. 21.
    Fölsch UR, Grieb N, Caspary WF, Creutzfeld W. Influence of short-and long-term feeding of an α-amylase inhibitor (BAY e4609) on the exocrine pancreas of the rat.Digestion 1981; 21: 74–82.PubMedGoogle Scholar
  22. 22.
    Giles KW, Myers A. An improved diphenylamine method for the estimation of deoxyribonucleic acid.Nature (London) 1965; 206: 93.CrossRefGoogle Scholar
  23. 23.
    Fritz H, Trautschold I, Werle E. Protease inhibitors, inMethods of Enzymatic Analysis, vol. 2, 2nd ed., Bergmeyer HU, ed., Verlag Chemie, Weinheim, Academic, New York, 1974; 1064–1080.Google Scholar
  24. 24.
    Ceska M, Brown B, Birath K. A new rapid method for the clinical determination of α-amylase activities in human serum and urine. Optimal conditions.Clin Chim Acta 1969; 26: 437–444.PubMedCrossRefGoogle Scholar
  25. 25.
    Erlanger BF, Kokowsky W, Cohen W. The preparation and properties of two new chromogenic substrates of trypsin.Arch Biochem Biophys 1961; 95: 271–278.PubMedCrossRefGoogle Scholar
  26. 26.
    Bundy HF. Chymotrypsin-catalyzed hydrolysis of N-acetyl- and N-benzoyl-L-tyrosine p-nitroanilides.Arch Biochem Biophys 1963; 102: 416–422.PubMedCrossRefGoogle Scholar
  27. 27.
    Bieth J, Spiess B, Wermuth CG. The synthesis and analytical use of a highly sensitive and convenient substrate of elastase.Biochem Med 1974; 11: 350–357.PubMedCrossRefGoogle Scholar
  28. 28.
    Goa J. Micro biuret method for protein determination; determination of total protein in cerebrospinal fluid.Scand J Clin Lab Med 1953; 5: 218–222.CrossRefGoogle Scholar
  29. 29.
    Honegger J, Hadorn B. The determination of lipase activity in human duodenal juice.Biol Gastroenterol 1973; 6: 217–223.Google Scholar
  30. 30.
    Nagy I, Pap Á, Varró V. Time-course of changes in pancreatic size and enzyme composition in rats during starvation.Int J Pancreatol 1989; 5: 35–45.PubMedGoogle Scholar
  31. 31.
    Liddle RA, Goldfine ID, Williams JA. Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol.Gastroenterology 1984; 87: 542–549.PubMedGoogle Scholar
  32. 32.
    Tóth GK, Penke B, Zarándi M, Kovács K. Comparison and optimization of synthetic methods for preparing cholecystokinin peptides.Int J Peptide Protein Res 1985; 26: 630–638.CrossRefGoogle Scholar
  33. 33.
    Dilorenzo C, Williams CM, Hajnal F, Valenzuela JE. Pectin delays gastric emptying and increases satiety in obese subjects.Gastroenterology 1988; 95: 1211–1215.Google Scholar
  34. 34.
    Brodehl J. Thioacetamid in der experimentellen Leberforschung.Klin Wschr 1961; 39: 956–962.PubMedCrossRefGoogle Scholar
  35. 35.
    Zimmermann T, Franke H, Dargel R. Studies on lipid and lipoprotein metabolism in rat liver cirrhosis induced by different regimens of thioacetamide administration.Exp Pathol 1986; 30: 109–117.PubMedGoogle Scholar
  36. 36.
    Zimmermann T, Müller A, Machnik G, Franke H, Schubert H, Dargel R. Biochemical and morphological studies on production and regression of experimental liver cirrhosis induced by thioacetamide in Uje:WIST rats.Z Versuchstierkd 1987; 30: 165–180.PubMedGoogle Scholar
  37. 37.
    Nakamura T, Otsuki M, Tani S, Okabayashi Y, Fujii M, Oka T, Fujisawa T, Baba S. Pancreatic endocrine function in cirrhotic rats.Metabolism 1988 37: 892–899.PubMedCrossRefGoogle Scholar
  38. 38a.
    Takács T, Nagy I, Pap Á, Varró V. Effect of a new CCK receptor antagonist on pancreatic secretion and growth in rat [Abstract].Digestion 1987; 38: 60–61.Google Scholar
  39. 38b.
    Takács T, Nagy I, Pap Á, Varró V. The effect of long-term administration of lorglumide (CR 1409) on rat pancreatic growth and enzyme composition.Pancreas. 1990; 5: 606–610.PubMedCrossRefGoogle Scholar
  40. 39.
    Wisner JR, McLaughlin RE, Rich KA, Ozawa S, Renner IG. Effects of L-364, 718, a new cholecystokinin receptor antagonist, on camostate-induced growth of the rat pancreas.Gastroenterology 1988; 94: 109–113.PubMedGoogle Scholar
  41. 40.
    Nalander A-G, Chen D, Ihse I, Rehfeld JF, Håkansson R. Pancreatic atrophy in rats produced by the cholecystokinin-A receptor antagonist devazepide.Scand J Gastroenterol 1992; 27: 743–747.CrossRefGoogle Scholar
  42. 41.
    Tygstrup N, Iversen J. Carbohydrate metabolism in relation to liver physiology and disease, inThe Liver-Annual, Arias IM, Frenkel M, Wilson JHP, eds., Excerpta Medica, Amsterdam, 1981: 1–30.Google Scholar
  43. 42.
    Petrides SA, Strohmeyer G. Insulinresistenz bei LebererkrankungenZ Gastroenterologie 1986; 24: 403–415.Google Scholar
  44. 43.
    Müller MJ, Willmann O, Rieger A, Fenk A, Selberg O, Lautz HU, Bürger M, Balks HJ, von zur Mühlen A, Schmidt FW. Mechanism of insulin resistance associated with liver cirrhosis.Gastroenterology 1992; 102: 2033–2041.PubMedGoogle Scholar
  45. 44.
    Shankar TP, Drake S, Solomon SS. Insulin resistance and delayed clearance of peptide hormones in cirrhotic rat liver.Am J Physiol 1987; 252: E772-E777.PubMedGoogle Scholar
  46. 45.
    Go VLW. The physiology of cholecystokinin, inGut Hormones, Bloom SR, ed. Churchill Livingstone, Edinburgh, 1978; 203–207.Google Scholar
  47. 46.
    Watanapa P, Efa EF, Beardshall K, Calam J, Sarraf CE, Alison MR, Williamson RCN. Inhibitory effect of a cholecystokinin antagonist on the proliferative response of the pancreas to pancreatobiliary diversion.Gut 1991; 32: 1049–1054.PubMedCrossRefGoogle Scholar
  48. 47.
    Chey WY, Hendricks J, Lorber SH. Inactivation of secretin by the liver.Clin Res 1971; 19: 389.Google Scholar
  49. 48.
    Nagy I, Takács T, Mohácsi G, Pap Á, Varró V. Effects of long-term administration of cholecystokinin-octapeptide (CCK-8) with or without secretin on the rat pancreas [Abstract], inAbstract of the WORLD Congresses of Gastroenterology, Sydney 1990. The Medicine Group (UK), Abingdon, 1990; PP 376.Google Scholar
  50. 49.
    Schmidt E, Schmidt FW. Funktionelle Morphologie der Leber.Z Gastroenterologie 1987; Verh Bd 22: 16–38Google Scholar
  51. 50.
    Pap Á, Berger Z, Varró V. Trophic effect of cholecystokinin-octapeptide in man—A new way in the treatment of chronic pancreatitis.Digestion 1981; 21: 163–168.PubMedGoogle Scholar
  52. 51.
    Pap Á, Varró V. Effect of ceruletide treatment on exocrine pancreatic function in chronic pancreatitis [Abstract].Digestion 1984; 30: 118.Google Scholar

Copyright information

© Humana Press Inc 1993

Authors and Affiliations

  • István Nagy
    • 1
  • Ferenc Hajnal
    • 1
  • Gábor Mohácsi
    • 1
  • József Németh
    • 1
  • Zoltán Lászik
    • 2
  • Ákos Pap
    • 3
  1. 1.Department of MedicineAlbert Szent-Györgyi Medical UniversitySzegedHungary
  2. 2.First Department of PathologyAlbert Szent-Györgyi Medical UniversitySzegedHungary
  3. 3.2nd Department of MedicineSt. Imre HospitalBudapestHungary

Personalised recommendations