Skip to main content
Log in

Purification and stability of glutaryl-7-ACA acylase from pseudomonas sp.

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enzyme glutaryl-7-ACA acylase fromPseudomonas sp. NCIMB 40474, produced by a recombinantEscherichia coli host, was purified to homogeneity. The enzyme is a tetramer composed of two couples of asymmetric dimers, each of them constituted of two subunits of mol wt 18 and 52 kDa, respectively. It was found that glutaric acid, one of the products of the substrate hydrolysis, is an effective acylase inhibitor. Between pH 6.0 and pH 10.0, the enzymatic activity is almost constant, but below pH 6.0 it progressively declines. The acylase activity decreased sharply as a function of guanidine HC1 concentration. The loss is significant even at concentrations of denaturant lower than those causing unfolding, as suggested by UV spectroscopy and fluorescence emission studies. In these conditions (low denaturant concentration and low pH) the inactivation of the enzyme is caused by the tetramer dissociation into dimers. The lability of the quaternary structure of the enzyme is a key feature that must be taken into account for the improvement of the catalyst stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huber, F., Chauvette, R., and Jackson, B. (1972), inCephalosporins and Penicillins, Chemistry and Biology, Flynn, E., ed., Academic, New York, pp. 27–48.

    Google Scholar 

  2. Ichikawa, S., Murai, Y., Yamamoto, S., Shibuya, Y., Fujii, T., Komatsu, K., and Kodaira, R. (1981),Agric. Biol. Chem. 45, 2225–2229.

    CAS  Google Scholar 

  3. Shibuya, Y., Matsumoto, K., and Fujji, T. (1981),Argic, Biol, Chem. 45, 1561–1567.

    CAS  Google Scholar 

  4. Walton, R. (1963),Dev. Ind. Microbiol. 5, 349–353.

    CAS  Google Scholar 

  5. Franzosi, G. Battistel, E., Gagliardi, I., and Van derGoes, W. (1995),Appl. Microbiol. Biotechnol. 43, 508–513.

    Article  CAS  Google Scholar 

  6. Matsuda, A., Matsuyama, K., Yamamoto, K., Ichikawa, S., and Komatsu, K.-I. (1987),J. Bacteriol. 169, 5815–5820.

    CAS  Google Scholar 

  7. Matsuda, A., Toma, K., and Komatsu, K.-I. (1987),J. Bacteriol. 169, 5811–5826.

    Google Scholar 

  8. Sudhakaran, V. K., Deshpande, B. S., Ambedkar, S. S., and Shewale, J. G. (1992),Process Biochem. 27, 131–143.

    Article  CAS  Google Scholar 

  9. Vandamme, E. J. (1988) inImmobilized Biocatalysts and Antibiotic Production, Moo-Yang, M., ed., Elsevier, New York, pp. 261–286.

    Google Scholar 

  10. Nikolov, A. and Danielsson, B. (1994),Enzyme Microb. Technol. 16, 1031–1036.

    Article  CAS  Google Scholar 

  11. Nikolov, A. and Danielsson B. (1994),Enzyme Microb. Technol. 16, 1037–1041.

    Article  CAS  Google Scholar 

  12. Van derGoes, W., Bernardi, A., Bosetti, A., Franzosi, G., and Cesti, P. (1994), European Patent 0663445.

  13. Balasingham, K., Warburton, D., Dunnill, P., and Lilly, M. (1972),Biochim Biophys. Acta 276, 250–256.

    CAS  Google Scholar 

  14. Kirby, E. P. and Steiner, R. F. (1970),J. Biol. Chem. 245, 6300–6306.

    CAS  Google Scholar 

  15. Chen, R. F. (1990), inPractical Fluorescence, Guilbault, G. G., ed., Marcel Dekker, New York, pp. 618–675.

    Google Scholar 

  16. Bradford, M. (1976),Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  17. Ackers, G. K. (1970),Adv. Protein Chem. 24, 343–346.

    Article  CAS  Google Scholar 

  18. Ichikawa, S., Shibuya, Y., Matsumoto, K., Fujii, T., Komatsu, K.-I., and Kodaira, R. (1981),Agric. Biol. Chem. 45, 2231–2236.

    CAS  Google Scholar 

  19. Matsuda, A. and Komatsu, K.-I. (1985),J. Bacteriol. 163, 1222–1228.

    CAS  Google Scholar 

  20. Aramori, I., Fukagawa, M., Tsumura, M., Iwami, M., Ono, I., Kojo, H., Kohsaka, M., and Imanaka, H. (1991),J. Bacteriol. 173, 7848–7855.

    CAS  Google Scholar 

  21. Wolfbeis, O. S. (1985), inMolecular Luminescence Spectroscopy. Methods and Applications: Part 1, Schulman, S. G., ed., John Wiley, New York, pp. 177–180.

    Google Scholar 

  22. Pajot, P. (1976),Eur. J. Biochem 63, 263–269.

    Article  CAS  Google Scholar 

  23. Burstein, E. A., Vedenkina, N. S., and Ivkova, M. N. (1973),Photochem. Photobiol. 18, 263–279.

    CAS  Google Scholar 

  24. Pace, C. N., Shirley, B. A., and Thomson, J. A. (1989), inProtein Structure: a Practical Approach, Creighton, T. E., ed., IRL, Oxford, UK, pp. 311–329.

    Google Scholar 

  25. Pfeil, W. (1986), inThermodynamic Data for Biochemistry and Biotechnology, Hinz, H.-J., ed., Springer-Verlag, Berlin, pp. 349–376.

    Google Scholar 

  26. Lindsay, C. D. and Pain, R. H. (1990),Eur. J. Biochem. 192, 133–141.

    Article  CAS  Google Scholar 

  27. Fernandez-Lafuente, R., Rosell, C. M., Alvaro, G., and Guisan, J. M. (1992),Enzyme Microb. Technol.,14, 489–195.

    Article  CAS  Google Scholar 

  28. Bianchi, D., Golini, P., Bortolo, R., Battistel, E., Tassinari, R., and Cesti, P. (1997),Enzyme Microb. Technol. 20, 368–372.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battistel, E., Bianchi, D., Bortolo, R. et al. Purification and stability of glutaryl-7-ACA acylase from pseudomonas sp.. Appl Biochem Biotechnol 69, 53–67 (1998). https://doi.org/10.1007/BF02786021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786021

Index Entries

Navigation