Advertisement

Applied Biochemistry and Biotechnology

, Volume 69, Issue 1, pp 31–40 | Cite as

Specificity and mode of action of a thermostable xylanase from bacillus amyloliquefaciens on-line monitoring of hydrolysis products

  • Javier D. Breccia
  • Nelson Torto
  • Lo Gorton
  • Faustino Siñeriz
  • Rajni Hatti-Kaul
Original Articles

Abstract

A thermostable xylanase purified from a strain of Bacillus amyloliquefaciens MIR 32 was characterized with respect to its substrate specificity and mode of hydrolytic action. The enzyme was highly specific for xylans as substrate and displayed no activity toward other polysaccharides, including cellulose. The enzyme exhibited Km and Vmax of 4.5 mg/mL and 0.58 mmol/min/mg, respectively, with birchwood xylan as the substrate. Microdialysis sampling with anion exchange chromatography and integrated pulsed electrochemical detection were used for rapid on-line monitoring of products during hydrolysis of oat spelt and bagasse xylan, and xylooligosaccharides. Xylobiose and xylotriose were the main end products. Xylotetraose was the smallest oligosaccharide to be acted on by the xylanase. The product pattern confirmed that the enzyme was an endoxylanase.

Index Entries

Endoxylanase Bacillus amyloliquefaciens substrate specificity on-line monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biely, P. (1985),Trends Biotechnol. 3, 286–290.CrossRefGoogle Scholar
  2. 2.
    Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds. (1992),Progress in Biotechnology 7. Xylans and Xylanases, Elsevier, Amsterdam.Google Scholar
  3. 3.
    Viikari, L., Kantelinen, A., Sundquist, J., Linko, M. (1994),FEMS Microbiol. Rev. 13, 335–350.CrossRefGoogle Scholar
  4. 4.
    Li, X-L., Zhang, Z.-Q., Dean, J. F. D., Eriksson, K. E. L., and Ljungdahl, L. G. (1993),Appl. Environ. Microbiol. 59, 3212–3218.Google Scholar
  5. 5.
    Filho, E. X. F., Puls, J., and Coughlan, M. P. (1993),J. Ind. Microbiol. 11, 171–180.CrossRefGoogle Scholar
  6. 6.
    Raj, K. C. and Chandra, T. S. (1995),Biotechnol. Lett. 17, 309–314.CrossRefGoogle Scholar
  7. 7.
    Esteban, R., Villanueva, J. R., and Villa, T. G. (1982),Can. J. Microbiol. 28, 733–739.Google Scholar
  8. 8.
    Bernier, Jr. R., Desrochers, M., Jurasek, L., Paice, M.G. (1983),Appl. Environ. Microbiol. 46, 511–514.Google Scholar
  9. 9.
    Okazaki, W., Akiba, T., Horikoshi, K., and Akahoshi, R. (1985),Agric. Biol. Chem. 49, 2033–2039.Google Scholar
  10. 10.
    Okada, H. and Shinmyo, A. (1988),Methods Enzymol. 160, 632–637.Google Scholar
  11. 11.
    Morales, P., Madarro, A., Flors, A., Sendra, J. M., and Pérez-González, J. A. (1995),Enzyme Microb. Technol. 17, 424–429.CrossRefGoogle Scholar
  12. 12.
    Nakamura, S., Ishiguro, Y., Nakai, R., Wakabayashi, K., Aono, R., and Horikoshi, K. (1995),J. Mol. Catalysis B: Enzymatic 1, 7–15.CrossRefGoogle Scholar
  13. 13.
    Khasin, A., Alchanati, I., and Shoham, Y. (1993),Appl. Environ. Microbiol. 59, 1725–1730.Google Scholar
  14. 14.
    Wong, K. K. Y., Tan, L. U. L., and Saddler, J. N. (1988),Microbiol. Revs. 52, 305–317.Google Scholar
  15. 15.
    Coughlan, M. P. (1992), inProgress in Biotechnology 7. Xylan and Xylanases Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds., Elsevier, Amsterdam, pp. 111–139.Google Scholar
  16. 16.
    Wong, K. K. Y. and Saddler, J. N. (1992), inProgress in Biotechnology 7. Xylan and Xylanases, Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds., Elsevier, Amsterdam, pp. 171–186.Google Scholar
  17. 17.
    Dekker, R. F. H. and Richards, G. N. (1976),Adv. Carbohydr. Chem. Biochem. 32, 277–352.CrossRefGoogle Scholar
  18. 18.
    Biely, P., Vrsanská, and Kucár, S. (1992), inProgress in Biotechnology 7. Xylan and Xylanases, Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds., Elsevier, Amsterdam, pp. 81–95.Google Scholar
  19. 19.
    Bray, M. R. and Clarke, A. J. (1992), inProgress in Biotechnology 7. Xylan and Xylanases, Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds., Elsevier, Amsterdam, pp. 423–428.Google Scholar
  20. 20.
    Herbers, K., Wilke, I., and Sonnewald, U. (1995),Biotechnology 13, 63–66.CrossRefGoogle Scholar
  21. 21.
    Breccia, J. D., Baigorí, M. D., Castro, G. R., Siñeriz, F., and Hatti-Kaul, R. (1997),Enzyme Microb. Technol, in press.Google Scholar
  22. 22.
    Torto, N., Buttler, T., Gorton, L., Marko-Varga, G., Stålbrand, H., and Tjerneld, F. (1995),Anal. Chim. Acta. 313, 15–24.CrossRefGoogle Scholar
  23. 23.
    Torto, N., Marko-Varga, G., Gorton, L., Stålbrand, H., and Tjerneld, F. (1996),J. Chromatogr. A. 725, 165–175.CrossRefGoogle Scholar
  24. 24.
    Breccia, J. D., Castro, G. R., Baigori, M. D., and Siñeriz, F. (1995),J. Appl. Bacterial. 78, 469–472.Google Scholar
  25. 25.
    Miller, G. L. (1959),Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  26. 26.
    Torto, N., Laurell, T., Marko-Varga, G., and Gorton, L. (1997),J. Memb. Sci. 130, 239–248.CrossRefGoogle Scholar
  27. 27.
    Nanmori, T., Watanabe, T., Shinke, R., Kohno, A., and Kawamura, Y. (1990),J. Bacteriol. 172, 6669–6672.Google Scholar
  28. 28.
    Kormelink, F. J. M., Gruppen, H., Wood, T. M., and Beldman, G. (1992), inProgress in Biotechnology 7. Xylan and Xylanases, Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds., Elsevier, Amsterdam, pp. 141–147.Google Scholar
  29. 29.
    Dey, D., Hinge, J., Shendye, A., and Rao, M. (1992),Can. J. Microbiol. 38, 436–442.Google Scholar
  30. 30.
    Morales, P., Madarro, A., Pérez-González, J. A., Sendra, J. M., Piñaga, F., and Flors, A. (1993),Appl. Environ. Microbiol. 59, 1376–1382.Google Scholar
  31. 31.
    Honda, H., Kudo, T., Ikura, Y., and Horikoshi, K. (1985),Can. J. Microbiol. 31, 538–542.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Javier D. Breccia
    • 1
    • 2
  • Nelson Torto
    • 3
  • Lo Gorton
    • 3
  • Faustino Siñeriz
    • 1
    • 2
  • Rajni Hatti-Kaul
    • 4
  1. 1.Cátedra de Microbiología Superior Facultad de Química Bioquímica y FarmaciaUniversidad Nacional de TucumánTucumánArgentina
  2. 2.PROIMIMIRCEN Avda. Belgrano y CaserosTucumánArgentina
  3. 3.Department of Analytical ChemistryArgentina
  4. 4.Department of Biotechnology Center for Chemistry and Chemical EngineeringLund UniversityLundSweden

Personalised recommendations