Skip to main content
Log in

Specificity and mode of action of a thermostable xylanase from bacillus amyloliquefaciens on-line monitoring of hydrolysis products

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A thermostable xylanase purified from a strain of Bacillus amyloliquefaciens MIR 32 was characterized with respect to its substrate specificity and mode of hydrolytic action. The enzyme was highly specific for xylans as substrate and displayed no activity toward other polysaccharides, including cellulose. The enzyme exhibited Km and Vmax of 4.5 mg/mL and 0.58 mmol/min/mg, respectively, with birchwood xylan as the substrate. Microdialysis sampling with anion exchange chromatography and integrated pulsed electrochemical detection were used for rapid on-line monitoring of products during hydrolysis of oat spelt and bagasse xylan, and xylooligosaccharides. Xylobiose and xylotriose were the main end products. Xylotetraose was the smallest oligosaccharide to be acted on by the xylanase. The product pattern confirmed that the enzyme was an endoxylanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biely, P. (1985),Trends Biotechnol. 3, 286–290.

    Article  CAS  Google Scholar 

  2. Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds. (1992),Progress in Biotechnology 7. Xylans and Xylanases, Elsevier, Amsterdam.

  3. Viikari, L., Kantelinen, A., Sundquist, J., Linko, M. (1994),FEMS Microbiol. Rev. 13, 335–350.

    Article  CAS  Google Scholar 

  4. Li, X-L., Zhang, Z.-Q., Dean, J. F. D., Eriksson, K. E. L., and Ljungdahl, L. G. (1993),Appl. Environ. Microbiol. 59, 3212–3218.

    CAS  Google Scholar 

  5. Filho, E. X. F., Puls, J., and Coughlan, M. P. (1993),J. Ind. Microbiol. 11, 171–180.

    Article  Google Scholar 

  6. Raj, K. C. and Chandra, T. S. (1995),Biotechnol. Lett. 17, 309–314.

    Article  CAS  Google Scholar 

  7. Esteban, R., Villanueva, J. R., and Villa, T. G. (1982),Can. J. Microbiol. 28, 733–739.

    CAS  Google Scholar 

  8. Bernier, Jr. R., Desrochers, M., Jurasek, L., Paice, M.G. (1983),Appl. Environ. Microbiol. 46, 511–514.

    CAS  Google Scholar 

  9. Okazaki, W., Akiba, T., Horikoshi, K., and Akahoshi, R. (1985),Agric. Biol. Chem. 49, 2033–2039.

    CAS  Google Scholar 

  10. Okada, H. and Shinmyo, A. (1988),Methods Enzymol. 160, 632–637.

    CAS  Google Scholar 

  11. Morales, P., Madarro, A., Flors, A., Sendra, J. M., and Pérez-González, J. A. (1995),Enzyme Microb. Technol. 17, 424–429.

    Article  CAS  Google Scholar 

  12. Nakamura, S., Ishiguro, Y., Nakai, R., Wakabayashi, K., Aono, R., and Horikoshi, K. (1995),J. Mol. Catalysis B: Enzymatic 1, 7–15.

    Article  CAS  Google Scholar 

  13. Khasin, A., Alchanati, I., and Shoham, Y. (1993),Appl. Environ. Microbiol. 59, 1725–1730.

    CAS  Google Scholar 

  14. Wong, K. K. Y., Tan, L. U. L., and Saddler, J. N. (1988),Microbiol. Revs. 52, 305–317.

    CAS  Google Scholar 

  15. Coughlan, M. P. (1992), inProgress in Biotechnology 7. Xylan and Xylanases Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds., Elsevier, Amsterdam, pp. 111–139.

    Google Scholar 

  16. Wong, K. K. Y. and Saddler, J. N. (1992), inProgress in Biotechnology 7. Xylan and Xylanases, Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds., Elsevier, Amsterdam, pp. 171–186.

    Google Scholar 

  17. Dekker, R. F. H. and Richards, G. N. (1976),Adv. Carbohydr. Chem. Biochem. 32, 277–352.

    Article  CAS  Google Scholar 

  18. Biely, P., Vrsanská, and Kucár, S. (1992), inProgress in Biotechnology 7. Xylan and Xylanases, Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds., Elsevier, Amsterdam, pp. 81–95.

    Google Scholar 

  19. Bray, M. R. and Clarke, A. J. (1992), inProgress in Biotechnology 7. Xylan and Xylanases, Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds., Elsevier, Amsterdam, pp. 423–428.

    Google Scholar 

  20. Herbers, K., Wilke, I., and Sonnewald, U. (1995),Biotechnology 13, 63–66.

    Article  CAS  Google Scholar 

  21. Breccia, J. D., Baigorí, M. D., Castro, G. R., Siñeriz, F., and Hatti-Kaul, R. (1997),Enzyme Microb. Technol, in press.

  22. Torto, N., Buttler, T., Gorton, L., Marko-Varga, G., Stålbrand, H., and Tjerneld, F. (1995),Anal. Chim. Acta. 313, 15–24.

    Article  CAS  Google Scholar 

  23. Torto, N., Marko-Varga, G., Gorton, L., Stålbrand, H., and Tjerneld, F. (1996),J. Chromatogr. A. 725, 165–175.

    Article  Google Scholar 

  24. Breccia, J. D., Castro, G. R., Baigori, M. D., and Siñeriz, F. (1995),J. Appl. Bacterial. 78, 469–472.

    Google Scholar 

  25. Miller, G. L. (1959),Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  26. Torto, N., Laurell, T., Marko-Varga, G., and Gorton, L. (1997),J. Memb. Sci. 130, 239–248.

    Article  CAS  Google Scholar 

  27. Nanmori, T., Watanabe, T., Shinke, R., Kohno, A., and Kawamura, Y. (1990),J. Bacteriol. 172, 6669–6672.

    CAS  Google Scholar 

  28. Kormelink, F. J. M., Gruppen, H., Wood, T. M., and Beldman, G. (1992), inProgress in Biotechnology 7. Xylan and Xylanases, Visser, J., Beldman, G., Kusters-van Someren, M. A., and Voragen, A. G. J., eds., Elsevier, Amsterdam, pp. 141–147.

    Google Scholar 

  29. Dey, D., Hinge, J., Shendye, A., and Rao, M. (1992),Can. J. Microbiol. 38, 436–442.

    CAS  Google Scholar 

  30. Morales, P., Madarro, A., Pérez-González, J. A., Sendra, J. M., Piñaga, F., and Flors, A. (1993),Appl. Environ. Microbiol. 59, 1376–1382.

    CAS  Google Scholar 

  31. Honda, H., Kudo, T., Ikura, Y., and Horikoshi, K. (1985),Can. J. Microbiol. 31, 538–542.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breccia, J.D., Torto, N., Gorton, L. et al. Specificity and mode of action of a thermostable xylanase from bacillus amyloliquefaciens on-line monitoring of hydrolysis products. Appl Biochem Biotechnol 69, 31–40 (1998). https://doi.org/10.1007/BF02786019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786019

Index Entries

Navigation