Applied Biochemistry and Biotechnology

, Volume 68, Issue 1–2, pp 121–133 | Cite as

Imidazole—a new ligand for metal affinity precipitation

Precipitation of Kunitz soybean trypsin inhibitor using cu(II)-loaded copolymers of 1-vinylimidazole withN-vinylcaprolactam orN-isopropylacrylamide
  • I. Yu. Galaev
  • A. Kumar
  • R. Agarwal
  • M. N. Gupta
  • B. MattiassonEmail author
Original Articles


Kunitz soybean trypsin inhibitor (STI) was specifically coprecipitated during precipitation of Cu(II)-loaded copolymers induced by increase in temperature and ionic strength. The copolymers used consisted of 1-vinylimidazole andN-vinylcaprolactam orN- isopropylacrylamide. The elution of STI was achieved by solubilization of the STI-Cu(II)-polymer complex in the presence of an excess of the competing ligand, imidazole, and a subsequent precipitation of the polymer with STI remaining free in solution in a purified form as judged by Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). To the best of our knowledge this is the first reported successful metal affinity precipitation of protein in a heterobifunctional format.

Index Entries

Immobilized metal affinity precipitation Kunitz soybean inhibitor poly(N-isopropylacrylamide) 



iminodiacetic acid


immobilized metal affinity chromatography






N-vinyl caprolactam


poly(N-vinyl caprolactam)






copolymer of VI with VCL


copolymer of VI with NIPAM


bovine serum albumin


immunoglobulin gamma


Kunitz soybean trypsin inhibitor




tetraethylene methylenediamine


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sulkowski, E. (1985),Trends Biotechnol. 3, 1–7.CrossRefGoogle Scholar
  2. 2.
    Arnold, F. H. (1991),Bio/Technology 9, 151–156.CrossRefGoogle Scholar
  3. 3.
    Gupta, M. N. and Mattiasson, B. (1994), inHighly Selective Separations in Biotechnology, Street, G., ed., Blackie Academic & Professional, London, pp. 7–33.Google Scholar
  4. 4.
    Porath, J. (1992),Protein Expression Purific. 3, 263–281.CrossRefGoogle Scholar
  5. 5.
    Van Dam, M. E., Wuenchell, G. E., and Arnold F. H. (1989),Biotechnol. Appl. Biochem. 11, 492–502.Google Scholar
  6. 6.
    Lilius, G., Persson, M., Bülow, L., and Mosbach, K. (1991),Eur. J. Biochem. 198, 499–504.CrossRefGoogle Scholar
  7. 7.
    Agarwal, R. and Gupta, M. (1994),Biotechnol. Techniques 8, 655–658.CrossRefGoogle Scholar
  8. 8.
    Galaev, I. Yu. and Mattiasson, B. (1993),Biotechnol. Bioeng. 41, 1101–1106.CrossRefGoogle Scholar
  9. 9.
    Yamamoto, M. and Ikenaka, T. (1967J. Biochem. (Tokyo) 62, 141–149.Google Scholar
  10. 10.
    Erlander, B. F., Kokowsky, N., and Cohen, W. (1961),Arch. Biochem. Biophys. 95, 271–278.CrossRefGoogle Scholar
  11. 11.
    Bradford, M. M. (1976),Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  12. 12.
    Hames, B. D. (1986), inGel Electrophoresis of Proteins: a Practical Approach, Hames, B. D. and Rickwod, D. eds., IRL Press, Oxford, pp. 1–86.Google Scholar
  13. 13.
    Galaev, I. Yu. and Mattiasson, B. (1992),Biotechnol. Techn. 6, 353–358.CrossRefGoogle Scholar
  14. 14.
    Galaev, I. Yu. and Mattiasson, B. (1993),Enzyme Microb. Technol. 15, 354–366.CrossRefGoogle Scholar
  15. 15.
    Porath, J. and Olin, B. (1983),Biochemistry 22, 1621–1630.CrossRefGoogle Scholar
  16. 16.
    Kumar, A., Agarwal, R., Batra, R., and Gupta M. N. (1994),Biotechnol. Techniques 8, 651–654.CrossRefGoogle Scholar
  17. 17.
    Freed, R. C. and Ryan, D. (1980),Biochim. Biophys. Acta. 624, 562–572.Google Scholar
  18. 18.
    Fratalli, V. and Steiner, R. F. (1968),Biochemistry 7, 521–530.CrossRefGoogle Scholar
  19. 19.
    Liu, K.-J. and Gregor, H. P. (1965J. Phys. Chem. 69, 1252–1259.CrossRefGoogle Scholar
  20. 20.
    Todd, R. J., Johnson, R. D., and Arnold, F. (1994J. Chromatogr. 662, 13–26.CrossRefGoogle Scholar
  21. 21.
    Gold, D. H. and Gregor, H. P. (1960J. Phys. Chem. 64, 1464–1467.CrossRefGoogle Scholar
  22. 22.
    Verweij, P. D., Sital, S., Haanepen, M. J., Driessen, W. L., and Reedijk, J. (1993),Eur. Polym. J. 29, 1603–1614.CrossRefGoogle Scholar
  23. 23.
    Bueno, S. M. A., Haupt, K., and Vijayalakshmi, M. A. (1995J. Chromatogr. 667, 57–67.CrossRefGoogle Scholar
  24. 24.
    El-Kak, A., Manjini, S., and Vijayalakshmi, M. A. (1992J. Chromatogr. 604, 29–37.CrossRefGoogle Scholar
  25. 25.
    Millot, M. C., Sebille B., Halli, A., Hommel, H., and Legrand, A. P. (1993),Chromatographia 37, 584–592.CrossRefGoogle Scholar
  26. 26.
    Millot, M. C., Herv’e, F., and Sebille, B. (1995J. Chromatogr. 664, 55–67.CrossRefGoogle Scholar
  27. 27.
    Hutchens, T. W., Nelson, R. W., Li, C. M., and Yip, T.-T. (1992J. Chromatogr. 604, 125–132.CrossRefGoogle Scholar
  28. 28.
    Hutchens, T. W. and Yip, T.-T. (1992J. Chromatogr. 604, 133–141.CrossRefGoogle Scholar
  29. 29.
    ChromBook (1996), Merk KGaA, Darmstadt, Germany, pp. 239–273.Google Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • I. Yu. Galaev
    • 1
  • A. Kumar
    • 2
  • R. Agarwal
    • 2
  • M. N. Gupta
    • 2
  • B. Mattiasson
    • 1
    Email author
  1. 1.Department of Biotechnology, Center for Chemistry and Chemical EngineeringLund UniversityLundSweden
  2. 2.Chemistry DepartmentIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations