Applied Biochemistry and Biotechnology

, Volume 68, Issue 1–2, pp 113–120 | Cite as

Characterization of novel neopullulanase fromBacillus polymyxa

  • Maria Jesus Yebra
  • Jaime Arroyo
  • Pascual Sanz
  • Jose Antonio Prieto
Original Articles


Bacillus polymyxa CECT 155 produces an extracellular neopullulanase activity that degrades pullulan to panose. This activity was stimulated by the presence of pullulan in the culture, and repressed by glucose. The apparent mol wt determined for the enzyme was 58 kDa. The optimum pH and temperature for neopullulanase activity were pH 6.0 and 50°C, respectively. The enzyme was stable in a pH range of 4.0–8.0, and temperatures up to 60°C. These properties make it suitable for the saccharification processes in the starch industries.

Index Entries

Extracellular enzyme neopullulanase panose pullulan Bacillus polymyxa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Priest, F. G. and Stark, J. R. (1991), inBiotechnology of Amylodextrin Oligosaccharides, Friedman, R. B., ed., American Chemical Society, Washington, D.C., pp. 72–85.Google Scholar
  2. 2.
    Wallenfels, K., Bender, H., and Rached, J. R. (1966),Biochem. Biophys. Commun. 22, 254–266.CrossRefGoogle Scholar
  3. 3.
    Schülein, M. B. and Pedersen, H. (1984),Ann. NY Acad. Sci. 434, 271–274.CrossRefGoogle Scholar
  4. 4.
    Sakano, Y., Masuda, N., and Kobayashi, T. (1971),Agricultural Biol. Chem. 35, 971–973.Google Scholar
  5. 5.
    Susuki, Y. and Chishiro, M. (1983),Appl. Microbiol. Biotechnol. 17, 24–29.CrossRefGoogle Scholar
  6. 6.
    Imanaka, T. and Kuriki, T. (1989J. Bacteriol. 171, 369–374.Google Scholar
  7. 7.
    Fogarty, W. M. and Kelly, C. T. (1990), inMicrobial Enzymes and Biotechnology, Fogarty, W. M. and Kelly, C. T., eds., Elsevier, Oxford, pp. 72–132.Google Scholar
  8. 8.
    Fogarty, W. M. and Kelly, C. T. (1980), inEconomic Microbiology. Microbial Enzymes and Bioconversions, vol. 5, Rose, A. H., ed., Academic, London, pp. 115–170.Google Scholar
  9. 9.
    Morgan, F. J., Adams, K. R., and Priest, F. G. (1979J. Appl. Bacteriol. 46, 291–294.Google Scholar
  10. 10.
    Castro, G. R., Ducrey-Santopietro, L. M., and Siñeriz, F. (1992),App. Biochem. Biotech. 37, 227–233.Google Scholar
  11. 11.
    Norman, B. E. (1982),Starch/Stärke. 34, 340–346.CrossRefGoogle Scholar
  12. 12.
    Slominska, L. and Maczynski, M. (1985),Starch/Stärke. 37, 386–390.CrossRefGoogle Scholar
  13. 13.
    Shiraishi, F., Kawakami, K., Yuasa, A., Kojima, T., and Kusunoki, K. (1987),Biotech. Bioeng. 30, 374–380.CrossRefGoogle Scholar
  14. 14.
    Rugbjerg, U. (1987), II Meeting on Industrial Application of Enzymes, Barcelona, Spain.Google Scholar
  15. 15.
    Hebeda, R. E., Bowles, L. K., and Teague, W. M. (1990),Cereal Foods World 35, 453–457.Google Scholar
  16. 16.
    Hebeda, R. E., Bowles, L. K., and Teague, W. M. (1991),Cereal Foods World 36, 619–624.Google Scholar
  17. 17.
    Bernfeld, P. (1955),Methods Enzymol. 1, 149–158.CrossRefGoogle Scholar
  18. 18.
    Shen, G. J., Srivastava, K. C., Saha, B. C., and Zeikus, J. G. (1990),App. Microbiol. Biotech. 33, 340–344.CrossRefGoogle Scholar
  19. 19.
    Prieto, J. A., Bort, B. R., Martinez, J., Randez-Gil, F., Buesa, C., and Sanz, P. (1995),Biochem. Cell Biol. 73, 41–49.CrossRefGoogle Scholar
  20. 20.
    Kennedy, J. F., Cabalda, V. M., and White, C. A. (1988),Trends Biotechnol. 6, 184–188.CrossRefGoogle Scholar
  21. 21.
    Nigam, P. and Singh, D. (1995),Enzyme Microbial Tech. 17, 770–778.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Maria Jesus Yebra
    • 1
  • Jaime Arroyo
    • 1
  • Pascual Sanz
    • 1
  • Jose Antonio Prieto
    • 1
  1. 1.Institute de Agroqu’imica y Tecnolog’ia de los AlimentosConsejo Superior de Investigaciones Cient’ificasBurjassotSpain

Personalised recommendations