Applied Biochemistry and Biotechnology

, Volume 68, Issue 1–2, pp 95–112 | Cite as

Improved manufacture and application of an agarose magnetizable solid-phase support

  • Martin J. Davies
  • Diane E. Smethurst
  • Kate M. Howard
  • Michael Todd
  • Lisa M. Higgins
  • Ian J. Bruce
Original Articles


A simple, semiautomated, nonhazardous procedure for the production of a magnetizable solid-phase support (MSPS) has been developed based on the extrusion of molten agarose-iron oxide mixtures, which enables manufacture of a range of differently sized spherical agarose-iron oxide beads. This system has enabled scale-up of an original manufacture procedure and reproducible preparation of kg quantities of MSPS suitable for biomolecular purifications. An improved protocol for the isolation of plasmid DNA directly from cell lysates using this MSPS, derivatized with diethylaminoethyl (DEAE) groups, is reported. This involves a modified alkaline lysis, followed by adsorption to and elution from the support, yielding plasmid DNA of a purity comparable with, or better than, other methods of plasmid isolation. Using the same procedure, plasmid DNA can be isolated from bacterial cell culture volumes of 1.5 mL and 100 mL with equal efficiency and purity.

Index Entries

Magnetizable support purification biological molecules plasmid DNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dean, P. D. G., Johnson, W. S., and Middle, F. A. (1985),Affinity Chromatography, A Practical Approach, IRL, Oxford.Google Scholar
  2. 2.
    Whitesides, G. M., Kazlaukas, R. J., and Josephson, L. (1983),Trends Biotechnol 1, 145–148.CrossRefGoogle Scholar
  3. 3.
    Robinson, P.J., Dunnill, P., and Lilly, M. D. (1973),Biotech. Bioeng. 15, 603–606.CrossRefGoogle Scholar
  4. 4.
    Mosbach, K. and Anderson, L. (1977),Nature 270, 259–261.CrossRefGoogle Scholar
  5. 5.
    Menz, E. T., Havelick, J., Groman, E. V., and Josephson, L. (1986),Amer. Biotech. Lab. 4, 46–51.Google Scholar
  6. 6.
    Ugelstad, J., Stenstad, P., Kilkaas, L., Prestvik, W. S., Herje, R., Berge, A., and Hornes, E., (1994),Blood Purif. 11, 349–369.CrossRefGoogle Scholar
  7. 7.
    Hailing, P. J., and Dunill, P. (1980),Enzyme Microb. Technol. 2, 2–10.CrossRefGoogle Scholar
  8. 8.
    Hollung, P. J., Gabrielson, O. S., and Jakobsen, K. S. (1994),Nucl. Acids. Res. 22, 3261–3262.CrossRefGoogle Scholar
  9. 9.
    Pourfarzaneh, M., Sandy, K., Johnson, C., and Landon, J. (1982),Ligand Q. 5, 41–47.Google Scholar
  10. 10.
    Burns, M. A., and Graves, D. J. (1985),Biotechnol. Prog. 1, 95–103.Google Scholar
  11. 11.
    Jakobsen, K. S., Hagen, M., Sæbee-Larsen, S., Hollung, K., Espelund, M., and Hornes, E. (1994), inAdvances in Biomagnetic Separation, Uhlen, M., Hornes, E., and Olsvik, O., eds., Eaton, Natick, MA, pp. 61–71.Google Scholar
  12. 12.
    Wahlberg, J., Lundeberg, J., Hultmann, T., and Uhlen, M. (1990),Proc. Natl. Acad. USA 87, 6569–6573.CrossRefGoogle Scholar
  13. 13.
    Li, J. H. and Smith, L. M. (1993),Anal. Chem. 65, 1323–1328.CrossRefGoogle Scholar
  14. 14.
    Hawkins, T. L., O’Connor-Morin, T., Toy, A., and Santillan, C. (1994),Nucl. Acids Res. 22, 4534–4544.CrossRefGoogle Scholar
  15. 15.
    Bruce, I. J., Davies, M. J., Howard, K., Smethurst, D. E., and Todd, M. (1996J. Pharm. Pharmacol. 48, 147–149.Google Scholar
  16. 16.
    Davies, M. J., Bruce, I. J., and Smethurst, D. E. (1994), inSeparations for Biotechnology 3, Pyle, D. L., ed. RSC, Cambridge, pp. 51–158.Google Scholar
  17. 17.
    Schwertmann, U. and Cornell, R. M. (1991),Iron Oxides in the Laboratory, VCH, Weineim, Germany.Google Scholar
  18. 18.
    Ennis, M. P. and Wisdom, G. B. (1990),Appl. Biochem. Biotech. 30, 155–161.Google Scholar
  19. 19.
    Hjerten, S. (1964),Biochim. Biophys. Ada 79, 393–398.CrossRefGoogle Scholar
  20. 20.
    Bengston, S. and Philipson, L. (1964),Biochim. Biophys. Acta 79, 399–406.CrossRefGoogle Scholar
  21. 21.
    Arshady, R. (1991J. Chromatog. 586, 181–197.CrossRefGoogle Scholar
  22. 22.
    Arshady, R. (1991J. Chromatog. 586, 199–219.CrossRefGoogle Scholar
  23. 23.
    Kuga, S. (1988),Chromatog. Libr. 40, 157–170.Google Scholar
  24. 24.
    Maniatis, T. Fritsch, E. F., and Sambrook, J. (1982),Molecular Cloning: a Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  25. 25.
    Bignell, G. R., University of Greenwich, Personal communication.Google Scholar
  26. 26.
    Laurent, T. C. (1967),Biochim Biophys. Acta 136, 199–205.Google Scholar
  27. 27.
    Frigon, F. P., Leypoldt, J. K., Uyeji, S., and Henderson, L. W. (1983),Anal. Chem. 55, 1349–1354.CrossRefGoogle Scholar
  28. 28.
    Laurent, T. C. and Killander, J. (1964J. Chromatog. 14, 317–330.CrossRefGoogle Scholar
  29. 29.
    Hjerten, S. and Eriksson, K. O. (1984),Anal. Biochem. 137, 313–317.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Martin J. Davies
    • 1
  • Diane E. Smethurst
    • 1
  • Kate M. Howard
    • 1
  • Michael Todd
    • 1
  • Lisa M. Higgins
    • 1
  • Ian J. Bruce
    • 1
  1. 1.Molecular Sciences Research Group, Dept. of Chemical and Life SciencesUniversity of GreenwichLondon

Personalised recommendations