Applied Biochemistry and Biotechnology

, Volume 68, Issue 1–2, pp 69–80 | Cite as

Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminai anaerobic bacteriaFibrobacter succinogenes andRuminococcus flavefaciens

  • R. R. Gokarn
  • M. A. Eiteman
  • S. A. Martin
  • K. -E. L. Eriksson
Original Articles


The production of organic acids by two anaerobic ruminal bacteria,Fibrobacter succinogenes S85 andRuminococcus flavefaciens FD-1, was compared with glucose, cellobiose, microcrystalline cellulose, Walseth cellulose (acid swollen cellulose), pulped paper, and steam-exploded yellow poplar as substrates. The major end product produced byF. succinogenes from each of these substrates was succinate (69.5–83%), the principal secondary product was acetate (16–30.5%). Maximum succinate productivity ranged from 14.1 mg/L · h for steam-exploded yellow Poplar to 59.7 mg/L · h for pulped paper. ForR. flavefaciens, the major end product from cellobiose, microcrystalline cellulose, and acid-swollen Walseth cellulose was acetate (39–46%), pulped paper and steam-exploded yellow poplar yielded succinate (42–54%) as the major product. Maximum succinate productivity byR. flavefaciens ranged from 9.21 mg/L · h for cellobiose to 43.1 mg/L · h for pulped paper. In general, much less succinate was produced at a lower maximum productivity byR. flavefaciens than byF. succinogenes under similar fermentation conditions. The maximum succinate productivities by these two organisms are comparable to the previously reported value of 59 mg/L · h forAnderobiospirillum succiniciproducens grown on glucose and corn steep liquor.

Index Entries

Fermentation succinate Fibrobacter succinogenes Ruminococcus flavefaciens ruminai bacteria lactate acetate formate cellulose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolin, B. (1979), inThe Global Carbon Cycle, John Wiley, New York.Google Scholar
  2. 2.
    Bashir, S. and Lee, S. (1994),Fuel Sci. Technol. Int. 12, 1427–1473.Google Scholar
  3. 3.
    Wyman, C. E. (1994),Bioresource Technol. 50, 3–16.CrossRefGoogle Scholar
  4. 4.
    Vallander, L. and Eriksson, K.-E. L. (1990),Adv. Biochem. Eng. 42, 63–73.Google Scholar
  5. 5.
    Schilling, L. B. (1995),FEMS Microbiol. Rev. 16, 101–110.CrossRefGoogle Scholar
  6. 6.
    Glassner, D. A., Elankovan, P., Beacom, D. R., and Berglund, K. A. (1995),Appl. Biochem. Biotechnol. 51/52, 73–82.CrossRefGoogle Scholar
  7. 7.
    Datta, R. (1992), US Patent 5,143,833.Google Scholar
  8. 8.
    Glassner, D. A. and Datta, R. (1992), US Patent 5,143,834.Google Scholar
  9. 9.
    Datta, R., Glassner, D. A., Jain, M. K., and Roy, J. R. (1990), Eur. Pat. Appl. 405–707.Google Scholar
  10. 10.
    Turk, R. S. (1993), U.S. Patent 5,229,161.Google Scholar
  11. 11.
    Datta, R. and Glassner, D. A. (1990), Eur. Pat. Appl. 389–103.Google Scholar
  12. 12.
    Lemme, C. J. and Datta, R. (1987), Eur. Pat. Appl. 249–773.Google Scholar
  13. 13.
    Lo, T., Engler, C. R., and Garcia, A. (1991), ASAE paper 916513.Google Scholar
  14. 14.
    Weimer, P. J., Shi, Y., and Odt, C. L. (1991),Appl. Microbiol. Biotechnol. 36, 178–183.CrossRefGoogle Scholar
  15. 15.
    Weimer, P. J. (1993),Arch. Microbiol. 160, 288–294.CrossRefGoogle Scholar
  16. 16.
    Halliwell, G. and Bryant, M. P. (1963),J. Gen. Microbiol. 32, 441–448.Google Scholar
  17. 17.
    Stewart, C. S. and Bryant, M. P. (1988), inThe Rumen Microbiol. Ecosystem, (Hobson, P. N. ed.), Elsevier, London, pp. 21–75.Google Scholar
  18. 18.
    Miller, T. L. (1978),Arch. Microbiol. 117, 145–154.CrossRefGoogle Scholar
  19. 19.
    Hopgood, M. F. and Walker, D. J. (1967),Aust. J. Biol. Sci. 20, 165–182.Google Scholar
  20. 20.
    Hopgood, M. F. and Walker, D. J. (1967),Aust. J. Biol. Sci. 20, 183–192.Google Scholar
  21. 21.
    Hopgood, M. F. and Walker, D. J. (1969),Aust. J. Biol. Sci. 22, 1413–1424.Google Scholar
  22. 22.
    Samuelov, N. S., Lamed, R., Lowe, S., and Zeikus, J. G. (1991),Appl. Environ. Microbiol. 57, 3013–3019.Google Scholar
  23. 23.
    Allison, M. J., Bryant, M. P., and Doetsch, R. N. (1958),Science 128, 474–475.CrossRefGoogle Scholar
  24. 24.
    Walseth, C. S. (1952),TAPPI 35, 288–233.Google Scholar
  25. 25.
    Hostettler, F., Borel, E., and Deuel, H. (1951),Helv. Chim. Acta. 34, 2133–2139.Google Scholar
  26. 26.
    Bryant, M. P., Small, N., Bouma, C., and Robinson, I. M. (1958),J. Bacteriol. 76, 529–537.Google Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • R. R. Gokarn
    • 1
  • M. A. Eiteman
    • 1
    • 2
    • 3
  • S. A. Martin
    • 2
  • K. -E. L. Eriksson
    • 3
  1. 1.Department of Biological and Agricultural Engineering, Driftmier Engineering CenterUniversity of GeorgiaAthens
  2. 2.Departments of Animal and Dairy Science and MicrobiologyUniversity of GeorgiaAthens
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthens

Personalised recommendations