Advertisement

Applied Biochemistry and Biotechnology

, Volume 68, Issue 1–2, pp 57–68 | Cite as

Diffusion and transfer of antibody proteins from a sugar-based hydrogel

  • Michael A. Markowitz
  • David C. Turner
  • Brett D. Martin
  • Bruce P. Gaber
Original Articles

Abstract

Diffusion of antibody protein from hydrogel films and hydrogel encapsulated in a microcapillary was studied. Thin hydrogel films were formed by crosslinking 6-acryloyl-B-O-methylgalactoside withN,N’-methylene-bis-acrylamide and the diffusive transport of monoclonal antimouse IgG-FITC into and out of the hydrated films was measured. Diffusion coefficients in 2 and 4% crosslinked hydrogel films were measured. The measured diffusion constants determined for IgG in both the 2 and 4% hydrogel films were comparable to the free diffusion of IgG in bulk water (D mean ∼ 10-7cm2/s). In addition, 2% crosslinked hydrogels were prepared in a capillary tube and the transport of antimouse IgG-FITC into and out of the hydrated hydrogel was measured. Kinetic analysis indicated that the protein transport through the capillary hydrogel was faster than would be expected for a simple diffusion process. Finally, by utilizing the diffusion of antibody from the capillary hydrogel, transfer of antibody to a silica surface was demonstrated. A capillary hydrogel loaded with antimouse IgG-FITC was used to transfer the protein to a silica surface forming a 30-μm spot of antibody, which was imaged using fluorescence microscopy. These results may lead to the development of a nonlithographic method of patterning antibodies on surfaces for use in integrated microimmunosensors.

Index Entries

Hydrogel multianalyte sensor immunosensor device miniaturization diffusion transfer capillary antibody 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byfield, M. P. and Abuknesha, R. A. (1994)Biosensors Bioelectronics 9, 373–399.CrossRefGoogle Scholar
  2. 2.
    Morgan, C. L. Newman, D. J., and Price, C. P. (1996)Clin. Chem. 42, 193–209.Google Scholar
  3. 3.
    Roe, J. N. (1992)Pharm. Res. 9, 835–844.CrossRefGoogle Scholar
  4. 4.
    Pritchard, D. J., Morgan, H., and Cooper, J. M. (1995)Anal. Chem. 67, 3605–3607.CrossRefGoogle Scholar
  5. 5.
    Kaplan, L. A. and Pesce, A. J., eds. (1989),Clinical Chemistry-Theory, Analysis and Correlation, 2nd ed., C. V. Mosby, St. Louis.Google Scholar
  6. 6.
    Pritchard, D. J., Morgan, H., and Cooper, J. M. (1995)Angew. Chem., Int. Ed. Engl. 34, 91.CrossRefGoogle Scholar
  7. 7.
    Hiller, Y., Gershoni, J. M., Bayer, E. A., and Wilchek (1987)Biochem. J. 248, 167.Google Scholar
  8. 8.
    Lofas, S. and Johnsson, B. (1990J. Chem. Soc. Chem. Commun. 1526–1528.Google Scholar
  9. 9.
    Bhatia, S. K., Teixeira, J. L., Anderson, M., Shriver-Lake, L. C., Schoen, P. E., and Ligler, F. S. (1993)Anal. Biochem. 208, 197.CrossRefGoogle Scholar
  10. 10.
    Kumar, A., Biebuyck, H. A., and Whitesides, G. M. (1994)Langmuir 10, 1498–1511.CrossRefGoogle Scholar
  11. 11.
    Peppas, N. A. (1987),Hydrogels in Medicine and Pharmacy, vols. 1–3, CRC, Boca Raton.Google Scholar
  12. 12.
    Peppas, N. A. and Barr-Howell, B. D. (1987), inHydrogels in Medicine and Pharmacy, vol. 1, Peppas, N. A., ed., CRC, Boca Raton, pp. 28–55.Google Scholar
  13. 13.
    Peppas, N. A. (1991J. Bioact. Compat. Polym. 6, 241–246.CrossRefGoogle Scholar
  14. 14.
    Fox, A. S., Crison, J. R., Lin, S. Y., and Amidon, G. L. (1994)Proc. Int. Symp. Control. Release Systems 21, 481,482.Google Scholar
  15. 15.
    Gehrke, S. H. and Lee, P. I. (1990),Drugs Pharm. Sci. 41, 333–392.Google Scholar
  16. 16.
    Brondsted, H. and Kopecek, J. (1990)Proc. Int. Symp. Contr. Rel. Bioact. Mater. 17, 128,129.Google Scholar
  17. 17.
    Aykut, G. and Hastrol, V. N. (1988)Biomaterials 9, 168–171.CrossRefGoogle Scholar
  18. 18.
    Monouquette, H. G., Sayles, G. D., and Ollis, D. F. (1990)Biochem. Bioeng. 35, 609–629.CrossRefGoogle Scholar
  19. 19.
    Kost, J. (1995)Polymer News 20, 73–80.Google Scholar
  20. 20.
    Hegre, O. D., Lacy, P. E., Dionne, K. E., Gentile, F. T., Aebischer, P., Laurance, M., et al. (1992)Diabetes Nutr. Metab. 5, 159–162.Google Scholar
  21. 21.
    Bell, C. L. And Peppas, N. A. (1996)Biomaterials 17, 1203–1218.CrossRefGoogle Scholar
  22. 22.
    Li, R. H., Altreuter, D. H., and Gentile, F. T. (1996)Biotechnol. Bioeng. 50, 365–373.CrossRefGoogle Scholar
  23. 23.
    Saraydin, D., Karadag, E., and Guven, O. (1996)Separation Sci. Technol. 31, 423–434.CrossRefGoogle Scholar
  24. 24.
    Blanco, M. D., Garcia, O. Trigo, R. M. Teijon, J. M., and Katime, I. (1996)Biomaterials 17, 1061–1067.CrossRefGoogle Scholar
  25. 25.
    Gayet, J. C. and Fortier, G. (1996J. Controlled Rel. 38, 177–184.CrossRefGoogle Scholar
  26. 26.
    Chen, J. Seongbong, J., and Park, K. (1995)Carbohydrate Polymers 28, 69–76.CrossRefGoogle Scholar
  27. 27.
    Weisz, P. B. (1995)Ind. Eng. Chem. Res. 34, 2692–2699.CrossRefGoogle Scholar
  28. 28.
    Martin, B. D., Ampofo, S. A., Linhardt, R. J., and Dordick, J. S. (1992)Macromolecules 25, 7081–7085.CrossRefGoogle Scholar
  29. 29.
    Chen, X., Johnson, A., and Dordick, J. S. (1995)Makrolmol. Chem. Phys. 3567.Google Scholar
  30. 30.
    Crank, J. (1979) inThe Mathematics of Diffusion, 2nd ed., Oxford University Press, Oxford, pp. 17,18.Google Scholar
  31. 31.
    Coromili, V. and Chang, T. M. S. (1993)Art. Cells. Immob. Biotechnol. 21, 427–444.Google Scholar
  32. 32.
    Chen, X., Dordick, J. A., and Rethwisch, D. G. (1995)Macromolecules 28, 6014–6019.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Michael A. Markowitz
    • 1
  • David C. Turner
    • 1
  • Brett D. Martin
    • 1
  • Bruce P. Gaber
    • 1
  1. 1.Laboratory for Molecular Interfacial Interactions, Code 6930Naval Research LaboratoryWashington, D. C.

Personalised recommendations