Applied Biochemistry and Biotechnology

, Volume 68, Issue 1–2, pp 21–40 | Cite as

Pretreatment of yellow poplar sawdust by pressure cooking in water

  • Joe Weil
  • Ayda Sarikaya
  • Shiang-Lan Rau
  • Joan Goetz
  • Christine M. Ladisch
  • Mark Brewer
  • Rick Hendrickson
  • Michael R. Ladisch
Original Articles


The pretreatment of yellow poplar wood sawdust using liquid water at temperatures above 220°C enhances enzyme hydrolysis. This paper reviews our prior research and describes the laboratory reactor system currently in use for cooking wood sawdust at temperatures ranging from 220 to 260°C. The wood sawdust at a 6–6.6% solid/liquid slurry was treated in a 2 L, 304 SS, Parr reactor with three turbine propeller agitators and a proportional integral derivative (PID) controller, which controlled temperature within ±1°C. Heat-up times to the final temperatures of 220, 240, or 260°C were achieved in 60–70 min. Hold time at the final temperature was less than 1 min. A serpentine cooling coil, through which tap water was circulated at the completion of the run, cooled the reactor’s contents within 3 min after the maximum temperature was attained. A bottoms port, as well as ports in the reactor’s head plate, facilitated sampling of the slurry and measuring the pH, which changes from an initial value of 5 before cooking to a value of approx 3 after cooking. Enzyme hydrolysis gave 80–90% conversion of cellulose in the pretreated wood to glucose. Simultaneous saccharification and fermentation of washed, pretreated lignocellulose gave an ethanol yield that was 55% of theoretical. Untreated wood sawdust gave less than 5% hydrolysis under the same conditions.

Index Entries

Wood water pretreatment enzyme hydrolysis fermentation pretreatment cellulose glucose ethanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bobleter, O., Niesner, R., and Rohr, M. (1976,J. Appl. Polymer Sci. 20, 2083–2093.CrossRefGoogle Scholar
  2. 2.
    Foody, P. (July 24,1984), U.S. Patent 4,461,648.Google Scholar
  3. 3.
    Haw, J. F., Maciel, G. E., Linden, J. C., and Murphy, V. G. (1985),Holzforschung 39, 99–107.Google Scholar
  4. 4.
    Hormeyer, H. F., Schwald, W., Bonn, G., and Bobleter, O. (1988),Holzforschung 42, 95–98.CrossRefGoogle Scholar
  5. 5.
    Walch, E., Zemann, A., Schinner, F., Bonn, G., and Bobleter, O. (1992),Bioresource Technol. 39, 173–177.CrossRefGoogle Scholar
  6. 6.
    Brownell, H. H. and Saddler, J. N. (1987),Biotechnol. and Bioeng 29, 228–235.CrossRefGoogle Scholar
  7. 7.
    Mok, W. S. L. and Antal, M. J. Jr. (1992),Ind. Eng. Chem. Res. 31, 1157–1161.CrossRefGoogle Scholar
  8. 8.
    van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., Jr., and Lynd, L. R. (1996),Appl. Biochem. Biotechnol. 57/58, 157–170.Google Scholar
  9. 9.
    Ladisch, M. R., Waugh, L., Westgate, P., Kohlmann, K., Hendrickson, R., Yang, Y., and Ladisch, C. (1992), Ladisch, M. R. and Bose, A., eds., American Chemical Society, Washington, DC, pp. 510–518.Google Scholar
  10. 10.
    Kohlmann, K. L., Westgate, P. J., Weil, J., and Ladisch, M. R. (1994), SAE 1993 Transactions.Journal of Aerospace Section. 102, 1476–1483.Google Scholar
  11. 11.
    Weil, J., M.S.E. Thesis, Purdue University, May, 1993.Google Scholar
  12. 12.
    Beltrame, P. L., Carniti, P., Visciglio, A., Focher, B., and Marzett, A. (1992),Biores. Technol. 39, 165–171.CrossRefGoogle Scholar
  13. 13.
    Heitz, M., Capek-Menard, E., Koeberle, P. G., Gagne, J., Chornet, E., Overend, R. P., Taylor, J. D., and Yu, E. (1991),Biores. Technol. 35, 23–32.CrossRefGoogle Scholar
  14. 14.
    Weil, J., Westgate, P., Kohlmann, K., and Ladisch, M. R. (1994),Enzyme Microb. Technol. 16, 1002–1004.CrossRefGoogle Scholar
  15. 15.
    Kohlmann, K. L., Sarikaya, A., Westgate, P. J., Weil, J., Velayudhan, A., Hendrickson, R., and Ladisch, M. R. (1995), Penner, M. and Saddler, J., eds., American Chemical Society, Washington, DC, ACS Symp. Ser. No. 618,237-255.Google Scholar
  16. 16.
    Kohlmann, K. L., Westgate, P., Velahudhan, A., Weil, J., Sarikaya, A., Brewer, M. A., Hendrickson, R. L., and Ladisch, M. R. (1996),Adv. Space Res. 18, 251–265.CrossRefGoogle Scholar
  17. 17.
    NREL, Chemical Analysis and Testing Standard Procedures, Golden, CO (1994).Google Scholar
  18. 18.
    Baugh, K. D. and McCarty, P. L. (1988),Biotechnol. Bioeng. 31, 50–61.CrossRefGoogle Scholar
  19. 19.
    Saeman, J. F. (1945),Ind. Eng. Chem. 37, 43–54.CrossRefGoogle Scholar
  20. 20.
    Kang, D. and Seyfried, W. E., Jr., (1996),Science 272, 1634–1636.CrossRefGoogle Scholar
  21. 21.
    Ladisch, M. R. (1989), inBiomass Handbook, Kitani O. and Hall C. W., eds., Gordon and Breach, New York, pp. 434–451.Google Scholar
  22. 22.
    Torget, R. and Hsu, T-A. (1994),Appl. Biochem. and Biotechnol. 45/46, 115–123.Google Scholar
  23. 23.
    Torget, R., Hatzis, C., Hayward, T. K., Hsu, T-A., Philippidis, G. P. (1996),Appl. Biochem. Biotechnol. 57/58, 85–101.Google Scholar
  24. 24.
    Ladisch, M. R., Ladisch, C. M., and Tsao, G. T. (1978),Science 201, 743–745.CrossRefGoogle Scholar
  25. 25.
    Ladisch, M. R., Lin, K. W., Voloch, M., and Tsao, G. T. (1983),Enzyme Microb. Technol,5, 82–102.CrossRefGoogle Scholar
  26. 26.
    Lawford, H. G. and Rousseau, J. D. (1992),Appl. Biochem. and Biotechnol. 34/35, 185–204.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Joe Weil
    • 1
    • 2
  • Ayda Sarikaya
    • 1
  • Shiang-Lan Rau
    • 1
    • 3
  • Joan Goetz
    • 3
  • Christine M. Ladisch
    • 3
  • Mark Brewer
    • 1
  • Rick Hendrickson
    • 1
  • Michael R. Ladisch
    • 1
    • 2
  1. 1.Laboratory of Renewable Resources EngineeringPurdue UniversityWest Lafayette
  2. 2.Department of Agricultural and Biological EngineeringPurdue UniversityWest Lafayette
  3. 3.Textile Science-CSRPurdue UniversityWest Lafayette

Personalised recommendations