Applied Biochemistry and Biotechnology

, Volume 68, Issue 1–2, pp 1–20 | Cite as

Utilization of glycosyltransferases to change oligosaccharide structures

  • Zhengmao Guo
  • Peng George WangEmail author
Patents and Literature


Carbohydrates on cell surfaces are important biomolecules in various biological recognition processes. Elucidation of the biological roles of complex oligosaccharides necessitates an efficient methodology to synthesize these compounds and their analogs. Enzymatic synthesis renders itself to be useful in the construction of an oligosaccharide structure owing to its mild reaction condition, high regio- and stereoselectivity. This review article focuses on the recent progress in oligosaccharide syntheses catalyzed by glycosyltransferases, namely sialyltransferase, galactosyltransferase, fucosyltransferase, andN-acetylglucosaminyltransferase. A survey of the latest patent and literature related to this field is also included.

Index Entries

Glycosyltransferase sialyltransferase galactosyltransferase fucosyltransferase N-acetylglucosaminyltransferase oligosaccharide 













uridine 5t’-diphosphate glucose


uridine 5t’-diphosphateN-acetylglucosamine


uridine 5t’-diphosphate galactose


uridine 5t’-diphosphateN-acetylgalactosamine


guanosine5t’-diphosphate mannose


guanosine 5t’-diphosphate fucose


uridine 5t’-diphosphate glucuronic acid

CMP-Sialic acid

cytidine 5t’-monophosphate sialic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J. F. and White, C. A. (1983),Bioactive Carbohydr. Ellis Horwood Ltd., West Sussex.Google Scholar
  2. 2.
    Feizi, T. (1991),Trends Biochem. Sci. 16, 84–86.CrossRefGoogle Scholar
  3. 3.
    Hakomori, S. (1989),Adv. Cancer Res. 52, 257–331.Google Scholar
  4. 4.
    Karlsson, K.-A. (1991),TIPS 12, 265–272.Google Scholar
  5. 5.
    Sharon, N. and Lis, H. (1989),Science 246, 227–234.CrossRefGoogle Scholar
  6. 6.
    Varki, A. (1993),Glycobiology 3, 97–130.CrossRefGoogle Scholar
  7. 7.
    Toone, E. J., Simon, E. S., Bednarski, M. D., and Whitesides, G. M. (1989),Tetrahedron 45, 5365–5422.CrossRefGoogle Scholar
  8. 8.
    Kleene, R. and Berger, E. G. (1993),Biochimica et Biophysica Acta 1154, 283–325.Google Scholar
  9. 9.
    Palcic, M. M. (1994),Methods Enzymol. 230, 301–316.Google Scholar
  10. 10.
    Gijsen, H. J. M., Qiao, L., Fitz, W., and Wong, C.-H. (1996),Chem. Rev. 96, 443–473.CrossRefGoogle Scholar
  11. 11.
    Ichikawa, Y., Look, G. C., and Wong, C.-H. (1992),Anal. Biochem. 202, 215–238.CrossRefGoogle Scholar
  12. 12.
    Ichikawa, Y., Look, G. C, Shen, G.-J., Sears, P., Wang, P., and Wong, C.-H. (1993), inCarbohydrate and carbohydrate polymers, Yalpani, M. Ed., ATL Press, pp 1–16.Google Scholar
  13. 13.
    Crocker, P. R., Kelm, S., Dubois, C., Martin, B., McWilliam, A. S., Shotton, D. M., Paulson, J. C., and Gordon, S. (1991),EMBO J. 10, 1661–1669.Google Scholar
  14. 14.
    Wong, C.-H. (1996),Acta Chemica Scandinavica 50, 211–218.Google Scholar
  15. 15.
    Wong, C.-H., Halcomb, R. L., Ichikawa, Y., and Kajimoto, T. (1995),Angew. Chem. Int. Ed. Engl. 34, 521–546.CrossRefGoogle Scholar
  16. 16.
    Leloir, L. F. (1971),Science 172, 1299–1303.CrossRefGoogle Scholar
  17. 17.
    Hagopian, A. and Eylar, E. H. (1968),Arch. Biochem. Biophys. 128, 422–433.CrossRefGoogle Scholar
  18. 18.
    Schauer, R. (1982),Adv. Carbohydr. Chem. Biochem. 40, 131–234.Google Scholar
  19. 19.
    Springer, T. A. and Lasky, L. A. (1991),Nature 349, 196–197.CrossRefGoogle Scholar
  20. 20.
    Kitagawa, H. and Paulson, J. C. (1994,J. Biol. Chem. 269, 1394–1401.Google Scholar
  21. 21.
    Kurosawa, N., Hamamoto, T., Lee, Y.-C, Nakaoka, T., Kojima, N., Tsuji, S. (1994,J. Biol. Chem. 269, 1402–1409.Google Scholar
  22. 22.
    Kurosawa, N., Kawasaki, M., Hamamoto, T., Nakaoka, T., Lee, Y.-C, Arita, M., Tsuji, S. (1994),Eur. J. Biochem. 219, 375–381.CrossRefGoogle Scholar
  23. 23.
    Kurosawa, N., Kojima, N., Mio, L., Hamamoto, T., Tsuji, S. (1994,J. Biol. Chem. 269, 19,048–19,053.Google Scholar
  24. 24.
    Ichikawa, Y., Liu, L.-C. J., Shen, G.-J., and Wong, C.-H. (1991,J. Am. Chem. Soc. 113, 6300–6302.CrossRefGoogle Scholar
  25. 25.
    Ichikawa, Y., Shen, G.-J., and Wong, C.-H. (1991,J. Am. Chem. Soc. 113, 4698–4700.CrossRefGoogle Scholar
  26. 26.
    Unverzagt, C., Kunz, H., and Paulson, J. C. (1990,J. Am. Chem. Soc. 112, 9308–9309.CrossRefGoogle Scholar
  27. 27.
    Unverzagt, C., Kelm, S., and Paulson, J. C. (1994),Carbohydr. Res. 251, 285–301.CrossRefGoogle Scholar
  28. 28.
    Conradt, H. S., Biinsch, A., and Brossmer, R. (1984),FEBS Lett. 170, 295–300.CrossRefGoogle Scholar
  29. 29.
    Gross, H. J., and Brossmer, R. (1988),Eur. J. Biochem. 177, 583–589.CrossRefGoogle Scholar
  30. 30.
    Gross, H. J., Buensch, A., Paulson, J. C., and Brossmer, R. (1987),Eur. J. Biochem. 168, 595–602.CrossRefGoogle Scholar
  31. 31.
    Gross, H. J., Rose, U., Krause, J. M., Paulson, J. C., Schmidt, K., Feeney, R. E., and Brossmer, R. (1989),Biochemistry 28, 7386–7392.CrossRefGoogle Scholar
  32. 32.
    Simon, E. S., Bednarski, M. D., and Whitesides, G. M. (1988,J. Am. Chem. Soc. 110, 7159–7163.CrossRefGoogle Scholar
  33. 33.
    Ito, Y. and Paulson, J. C. (1993,J. Am. Chem. Soc. 115, 7862–7863.CrossRefGoogle Scholar
  34. 34.
    Ito, Y., Gaudino, J. J., and Paulson, J. C. (1993),Pure Appl. Chem. 65, 753–762.CrossRefGoogle Scholar
  35. 35.
    Kren, V. and Thiem, J. (1995),Angew. Chem. Int. Ed. Engl. 34, 893–895.CrossRefGoogle Scholar
  36. 36.
    Pozsgay, V., Brisson, J.-R., Jennings, H. J., Allen, S., and Paulson, J. C. (1991,J. Org. Chem. 56, 3377–3385.CrossRefGoogle Scholar
  37. 37.
    Sabesan, S. and Paulson, J. C. (1986,J. Am. Chem. Soc. 108, 2068–2080.CrossRefGoogle Scholar
  38. 38.
    Defrees, S. A., Kosch, W., Way, W., Paulson, J. C., Sabesan, S., Halcomb, R. L., Huang, D. H., Ichikawa, Y., and Wong, C.-H. (1995,J. Am. Chem. Soc. 117, 66–79.CrossRefGoogle Scholar
  39. 39.
    Gillespie, W., Kelms, S., and Paulson, J. C. (1992,J. Biol. Chem. 267, 21,004–21,010.Google Scholar
  40. 40.
    Rao, A. K., Garver, F., and Mendicino, J. (1976),Biochemistry 15, 5001–5009.CrossRefGoogle Scholar
  41. 41.
    Do, K.-Y., Do, S.-I., and Cummings, R. D. (1995,J. Biol. Chem. 270, 18,447–18,451.CrossRefGoogle Scholar
  42. 42.
    Berliner, L. J., Davis, M. E., Ebner, K. E., Beyer, T. A., and Bell, J. E. (1984),Mol. Cell. Biochem. 62, 37–42.CrossRefGoogle Scholar
  43. 43.
    Palcic, M. M., Srivastava, O. P., Hindsgaul, O. (1987),Carbohydr. Res. 159, 315–324.CrossRefGoogle Scholar
  44. 44.
    Wong, C.-H., Ichikawa, Y., Krach, T., Gautheron-Le Narvor, C., Dumas, D. P., and Look, G. C. (1991),J.Am. Chem. Soc. 113, 8137–8145.CrossRefGoogle Scholar
  45. 45.
    Wiemann, T., Nishida, Y., Sinnwell, V., and Thiem, J. (1994,J. Org. Chem. 59, 6744–6747.CrossRefGoogle Scholar
  46. 46.
    Nishida, Y., Wiemann, T., Sinwell, V., and Thiem, J. (1993,J. Am. Chem. Soc. 115, 2536–2537.CrossRefGoogle Scholar
  47. 47.
    Nishida, Y., Wiemann, T., and Thiem, J. (1992),Tetrahedron Lett. 33, 8043–8046.CrossRefGoogle Scholar
  48. 48.
    Nishida, Y., Wiemann, T., and Thiem, J. (1993),Tetrahedron Lett. 34, 2905–2906.CrossRefGoogle Scholar
  49. 49.
    Srivastava, G., Hindsgaul, O., and Palcic, M. M. (1993),Carbohydrate Res. 245, 137–144.CrossRefGoogle Scholar
  50. 50.
    Thiem, J. and Wiemann, T., (1990),Angew. Chem. Int. Ed. Engl. 29, 80–82.CrossRefGoogle Scholar
  51. 51.
    Kajihara, Y., Endo, T., Ogasawara, H., Kodama, H., and Hashimoto, H. (1995),Carbohydr. Res. 269, 273–294.CrossRefGoogle Scholar
  52. 52.
    Kodama, H., Kajihara, Y., Endo, T., and Hashimoto, H. (1993),Tetrahedron Lett. 34, 6419–6422.CrossRefGoogle Scholar
  53. 53.
    Yuasa, H., Hindsgaul, O., and Palcic, M. M. (1992,J. Am. Chem. Soc. 114, 5891–5892.CrossRefGoogle Scholar
  54. 54.
    David, S., Aug’e, C., and Gautheron, C. (1991),Adv. Carbohydr. Chem. Biochem. 49, 175–237.CrossRefGoogle Scholar
  55. 55.
    Lowe, J. B., Stoolman, L. M., Nair, R. P., Larsen, R. D., Berhend, T. L., and Marks, R. M. (1990),Cell 63, 475–484.CrossRefGoogle Scholar
  56. 56.
    Kukowska-Latallo, J. F., Larsen, R. D., Nair, R. P., and Lowe, J. B. (1990),Genes. Dev. 4, 1288–1303.CrossRefGoogle Scholar
  57. 57.
    Kumar, R., Potvin, B., Muller, W. A., and Stanley, P. (1991,J. Biol. Chem. 266, 21,777–21,783.Google Scholar
  58. 58.
    Larsen, R. D., Ernst, L. K., Nair, R. P., and Lowe, J. B. (1990),Proc. Natl. Acad. Sci. USA 87, 6674–6678.CrossRefGoogle Scholar
  59. 59.
    Natsuka, S., Gersten, K. M., Zenita, K., Kannagi, R., Lowe, J. B. (1994,J. Biol. Chem. 269, 16789.Google Scholar
  60. 60.
    Weston, B. W., Nair, R. P., Larsen, R. D., and Lowe, J. B. (1992,J. Biol. Chem. 267, 4152–4160.Google Scholar
  61. 61.
    Weston, B. W., Smith, P. L., Kelly, R. J., and Lowe, J. B. (1992,J. Biol. Chem. 267, 24575–24584.Google Scholar
  62. 62.
    Rosevear, P. R., Nunez, H. A., and Barker, R. (1982),Biochemistry 21, 1421–1431.CrossRefGoogle Scholar
  63. 63.
    Beyer, A. T., Sadler, J. E., Rearick, J. I., Paulson, J. C., and Hill, R. L. (1981),Adv. Enzymol. 52, 23–175.Google Scholar
  64. 64.
    Ichikawa, Y., Lin, Y.-C, Dumas, D. P., Shen, G.-J., Garcia-Junceda, E., Williams, M. A., Bayer, R., Ketcham, C., Walker, L. E., Paulson, J. C., and Wong, C.-H. (1992,J. Am. Chem. Soc. 114, 9283–9298.CrossRefGoogle Scholar
  65. 65.
    Palcic, M. M., Venot, A. P., Ratcliffe, R. M., and Hindsgaul, O. (1989),Carbohydr. Res. 190, 1–11.CrossRefGoogle Scholar
  66. 66.
    Mollicone, R., Candelier, J.-J., Mennesson, B., Couillin, P., Venot, A. P., and Oriol, R. (1992),Carbohydr. Res. 228, 265–276.CrossRefGoogle Scholar
  67. 67.
    Mollicone, R., Gibaud, A., Francois, A., Ratcliffe, M., and Oriol, R. (1990),Eur. J. Biochem. 191, 169–176.CrossRefGoogle Scholar
  68. 68.
    de Vries, T., Srnka, C. A., Palcic, M. M., Swiedler, S. J., Eijnden, D. H. V. D., and Macher, B. A. (1995,J. Biol. Chem. 270, 8712–8722.CrossRefGoogle Scholar
  69. 69.
    Baisch, G., Öhrlein, R., Katopodis, A., and Ernst, B. (1996),Bioorganic Med. Chem. Lett. 6, 759–762.CrossRefGoogle Scholar
  70. 70.
    Lowe, L. M., Stolman, R. P., Nair, T. L., and Berhend, R. M. (1990),Cell 63, 475–484.CrossRefGoogle Scholar
  71. 71.
    Gokhale, U. B., Hindsgaul, O., and Palcic, M. M. (1990),Can. J. Chem. 68, 1063–1071.CrossRefGoogle Scholar
  72. 72.
    Srivastava, G., Kaur, K. J., Hindsgaul, O., and Palcic, M. M. (1992,J. Biol. Chem. 267, 22356–22361.Google Scholar
  73. 73.
    Hällgren, C. and Hindsgaul, O. (1995,J. Carbohydr. Chem. 14, 453–464.CrossRefGoogle Scholar
  74. 74.
    Brockhausen, I., Carver, J. P., and Schachter, H. (1988),Biochem. Cell Biol. 66, 1134–1151.CrossRefGoogle Scholar
  75. 75.
    Brockhausen, I., Hull, E., Hindsgaul, O., Schachter, H., Shah, R. N., Michnick, S. W., and Carver, J. P. (1989,J. Biol. Chem. 264, 11,211–11,221.Google Scholar
  76. 76.
    Srivastava, G., Alton, G., and Hindsgaul, O. (1990),Carbohydr. Res. 207, 259–276.CrossRefGoogle Scholar
  77. 77.
    Lindh, I. and Hindsgaul, O. (1991,J. Am. Chem. Soc. 113, 216–223.CrossRefGoogle Scholar
  78. 78.
    Linker, T., Crawley, S. C., and Hindsgaul, O. (1993),Carbohydr. Res. 245, 323–331.CrossRefGoogle Scholar
  79. 79.
    Khan, S. H., Duus, J. Ø., Crawley, S. C., Palcic, M. M., and Hindsgaul, O. (1994),Tetrahedron: asymmetry 5, 2415–2435.CrossRefGoogle Scholar
  80. 80.
    Ogawa, S., Furuya, T., Tsunoda, H., Hindsgaul, O., Stangier, K., and Palcic, M. M. (1995),Carbohydr. Res. 271, 197–205.CrossRefGoogle Scholar
  81. 81.
    Kodama, H., Baum, L. G., and Paulson, J. C. (1991),Carbohydr. Res. 218, 111–119.CrossRefGoogle Scholar
  82. 82.
    David, S. and Aug’e, C. (1987),Pure Appl. Chem. 59, 1501–1508.CrossRefGoogle Scholar
  83. 83.
    Thiem, J. and Treder, W. (1986), (1986).Angew. Chem. Int. Ed. Engl. 25, 1096–1097.CrossRefGoogle Scholar
  84. 84.
    Aug’e, C., Gautheron, C., and Pora, H. (1989),Carbohydr. Res. 193, 288–293.CrossRefGoogle Scholar
  85. 85.
    Aug’e, C., Fernandez-Fernandez, R., and Gautheron, C. (1990),Carbohydr. Res. 200, 257–268.CrossRefGoogle Scholar
  86. 86.
    Gaudino, J. J. and Paulson, J. C. (1994,J. Am. Chem. Soc. 116, 1149–1150.CrossRefGoogle Scholar
  87. 87.
    Sabesan, S., Duus, J., Domaille, P., Kelm, S., and Paulson, J. C. (1991),J.Am. Chem. Soc. 113, 5865–5866.CrossRefGoogle Scholar
  88. 88.
    Liu, K.-C. K. and Danishefsky, S. J. (1993,J. Am. Chem. Soc. 115, 4933–4934.CrossRefGoogle Scholar
  89. 89.
    Nilsson, K. G. L. (1989),Carbohydr. Res. 188, 9–17.CrossRefGoogle Scholar
  90. 90.
    de Heij, H. T., Kloosterman, M., Koppen, P. L., Van Boom, J. H., and van den Eijnden, D. H. (1988,J. Carbohydr. Chem. 7, 209–222.CrossRefGoogle Scholar
  91. 91.
    Pozsgay, V., Gaudino, J. J., Paulson, J. C. and Jennings, H. J. (1991),Bioorganic Med. Chem. Lett. 1, 391–394.CrossRefGoogle Scholar
  92. 92.
    Dumas, D. P., Ichikawa, Y., Wong, C.-H., Lowe, J. B., and Nair, R. P. (1991),Bioorg. Med. Chem. Lett. 1, 425–428.CrossRefGoogle Scholar
  93. 93.
    Nikrad, P. V., Kashem, M. A., Wlasichuk, K. B., Alton, G., and Venot, A. P. (1993),Carbohydr. Res. 250, 145–160.CrossRefGoogle Scholar
  94. 94.
    Wong, C.-H., Dumas, D. P., Ichikawa, Y., Koseki, K., Danishefsky, S. J., Weston, B. W., and Lowe, J. B. (1992,J. Am. Chem. Soc. 114, 7321–7322.CrossRefGoogle Scholar
  95. 95.
    Crawley, S. C., Hindsgaul, O., Ratcliffe, R. M., Lamontagne, L. R., and Palcic, M. M. (1989),Carbohydr. Res. 193, 249–256.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MiamiCoral Gables

Personalised recommendations