# Expansion of derivatives in one-dimensional dynamics

Article

Received:

Revised:

- 95 Downloads
- 6 Citations

## Abstract

We study the expansion of derivatives along orbits of real and complex one-dimensional maps for infinitely many, for uniform constants

*f*, whose Julia set*J*_{f}attracts a finite set*Crit*of non-flat critical points. Assuming that for each*c*ε*Crit*, either |*D f*^{n}(*f*(*c*))|→∞ (if*f*is real) or*b*_{n}·|*Df*^{n}(*f*(*c*))|→∞ for some summable sequence {*b*_{n}} (if*f*is complex; this is equivalent to summability of |*D f*^{n}(*f*(*c*))|^{−1}), we show that for every*x*ε*J*_{f}\U_{ i }*f*^{−i}(*Crit*), there exist*ℓ*(*x*)≤max_{ c }*ℓ*(*c*) and*K′*(*x*)>0$$|Df^n (x)^{l(x)} \ge K^1 (x).\prod\limits_{i = 0}^{s - 1} {(K_i .|} Df^{n_i - n_i + 1} (f(c_i ))|)$$

*n*. Here 0=*n*_{s}<…<*n*_{1}<*n*_{0}=*n*are so-called critical times,*c*_{i}is a point in*Crit*(or a repelling periodic point in the boundary of the immediate basin of a hyperbolic periodic attractor), which shadows orb(*x*) for*n*_{i}−n_{i}*+1*iterates, and$$D_k (ci) = \left\{ {\begin{array}{*{20}c} {\max (\lambda ,K.|Df^k (f(c_i ))|)} \\ {\max (\lambda ,K.b_k .|Df^k (f(c_i ))|)} \\\end{array}} \right\}\begin{array}{*{20}c} {if f is real,} \\ {if f is complex,} \\\end{array}$$

*K*>0 and λ>1. If all*c*ε*Crit*have the same critical order, then*K′*(*x*) is uniformly bounded away from 0. Several corollaries are derived. In the complex case, either*J*_{f}=\(\hat C\) or*J*_{f}has zero Lebesgue measure. Also (assuming all critical points have the same order) there exist*k*>0 such that if*n*is the smallest integer such that*x*enters a certain critical neighbourhood, then |*Df*^{n}(*x*)|≥*k*.## Keywords

Periodic Orbit Real Case Critical Time Periodic Point Periodic Attractor## Preview

Unable to display preview. Download preview PDF.

## References

- [1]A. Blokh and M. Lyubich,
*Attractors and transformations of an interval*, Banach Center Publications**23**(1986), 427–442.MathSciNetGoogle Scholar - [2]A. Blokh and M. Lyubich,
*On the decomposition of one-dimensional attractors of unimodal maps of the interval*, Algebra and Analysis (Leningrad Mathematical Journal)**1**(1989), 128–145.MathSciNetGoogle Scholar - [3]H. Bruin and J. Hawkins,
*Exactness and maximal automorphic factors of unimodal maps*, Ergodic Theory and Dynamical Systems**21**(2001), 1009–1034.MATHCrossRefMathSciNetGoogle Scholar - [4]H. Bruin, S. Luzzatto and S. van Strien,
*Decay of correlations in one-dimensional dynamics*, Annales Scientifiques de l’École Normale Supérieure, to appear.Google Scholar - [5]H. Bruin and S. van Strien,
*Existence of acips for multimodal maps*, in*Global Analysis of Dynamical Systems*, Festschrift to Floris Takens for his 60’th birthday, 2001, to appear.Google Scholar - [6]L. Carleson and W. Gamelin,
*Complex Dynamics*, Springer, Berlin, 1995.Google Scholar - [7]P. Collet and J.-P. Eckmann,
*Positive Lyapunov exponents and absolute continuity for maps of the interval*, Ergodic Theory and Dynamical Systems**3**(1983), 13–46.MATHMathSciNetGoogle Scholar - [8]J. Graczyk and S. Smirnov,
*Collet, Eckmann & Hölder*, Inventiones Mathematicae**133**(1998), 69–96.MATHCrossRefMathSciNetGoogle Scholar - [9]J. Graczyk and S. Smirnov,
*Non-uniform hyperbolicity in complex dynamics I, II*, Preprint (2001).Google Scholar - [10]J. Graczyk and S. Smirnov,
*Non-uniform hyperbolicity in complex dynamics. I Poincaré series and induced hyperbolicity*, Manuscript (2000).Google Scholar - [11]M. Lyubich,
*Ergodic theory for smooth one-dimensional dynamical systems*, Preprint, Stony Brook**11**(1990).Google Scholar - [12]R. Mañé,
*Hyperbolicity, sinks and measure in one dimensional dynamics*, Communications in Mathematical Physics**100**(1985), 495–524.MATHCrossRefMathSciNetGoogle Scholar - [13]R. Mañé,
*On a theorem of Fatou*, Boletim da Sociedade Brasileira de Matemática (N.S.)**24**(1993), 1–11.MATHCrossRefGoogle Scholar - [14]W. de Melo and S. van Strien,
*One-dimensional Dynamics*, Springer, Berlin, 1993.MATHGoogle Scholar - [15]M. Misiurewicz,
*Absolutely continuous measures for certain maps of an interval*, Publications Mathématiques de l’Institut des Hautes Études Scientifiques**53**(1981), 17–51.MATHCrossRefMathSciNetGoogle Scholar - [16]T. Nowicki,
*Symmetric S-unimodal mappings and positive Liapunov exponents*, Ergodic Theory and Dynamical Systems**5**(1985), 611–616.MATHMathSciNetCrossRefGoogle Scholar - [17]T. Nowicki and D. Sands,
*Non-uniform hyperbolicity and universal bounds for S-unimodal maps*, Inventiones Mathematicae**132**(1998), 633–680.MATHCrossRefMathSciNetGoogle Scholar - [18]T. Nowicki and S. van Strien,
*Invariant measures under a summability condition for unimodal maps*, Inventiones Mathematicae**105**(1991), 123–136.MATHCrossRefMathSciNetGoogle Scholar - [19]Chr. Pommerenke,
*Boundary behaviour of conformal maps*, Grundlehren der mathematischen Wissenschaften**299**, Springer-Verlag, Berlin, 1992.MATHGoogle Scholar - [20]E. Prado,
*Ergodicity of conformal measures for unimodal polynomials*, Conformal Geometry and Dynamics**2**(1998), 29–44.MATHCrossRefMathSciNetGoogle Scholar - [21]F. Przytycki,
*Iteration of holomorphic Collet-Eckmann maps: conformal and invariant measures*, Transactions of the American Mathematical Society**350**(1998), 717–742.MATHCrossRefMathSciNetGoogle Scholar - [22]F. Przytycki, J. Rivera-Letelier and S. Smirnov,
*Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps*, Inventiones Mathematicae**151**(2003), 29–63.MATHCrossRefMathSciNetGoogle Scholar - [23]F. Przytycki and S. Rohde,
*Rigidity of holomorphic Collet-Eckmann repellers*, Arkiv för Matematik**37**(1999), 357–371.MATHCrossRefMathSciNetGoogle Scholar - [24]J. Rivera-Letelier,
*Rational maps with decay of geometry: Rigidity, Thurston’s algorithm and local connectivity*, Preprint, Stony Brook**9**(2000).Google Scholar - [25]S. van Strien,
*Transitive maps which are not ergodic with respect to Lebesgue measure*, Ergodic Theory and Dynamical Systems**16**(1996), 833–848.MATHMathSciNetGoogle Scholar - [26]D. Sullivan,
*Conformal dynamical systems*, Lecture Notes in Mathematics**1007**, Springer, Berlin, 1983, pp. 725–752.Google Scholar

## Copyright information

© Hebrew University 2003