Skip to main content
Log in

On spectral characterizations of amenability

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that a measuredG-space (X, μ), whereG is a locally compact group, is amenable in the sense of Zimmer if and only if the following two conditions are satisfied: the associated unitary representationπ X ofG intoL 2(X, μ) is weakly contained into the regular representationλ G and there exists aG-equivariant norm one projection fromL∞(X×X) ontoL∞(X). We give examples of ergodic discrete group actions which are not amenable, althoughπ X is weakly contained intoλ G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Adams, G. Elliot and T. Giordano,Amenable actions of groups, Transactions of the American Mathematical Society344 (1994), 803–822.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Anantharaman-Delaroche,Action moyennable d’un groupe localement compact sur une algèbre de von Neumann, Mathematica Scandinavica45 (1979), 289–304.

    MATH  MathSciNet  Google Scholar 

  3. C. Anantharaman-Delaroche,Action moyennable d’un groupe localement compact sur une algèbre de von Neumann II, Mathematica Scandinavica50 (1982), 251–268.

    MATH  MathSciNet  Google Scholar 

  4. C. Anantharaman-Delaroche and J. Renault,Amenable Groupoids, Monographie de L’Enseignement Mathématique No36, Genève, 2000.

  5. C. Berg and J. P. R. Christensen,On the relation between amenability of locally compact groups and the norms of convolution operators, Mathematische Annalen208 (1974), 149–153.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. M. Cohen,Cogrowth and amenability of discrete groups, Journal of Functional Analysis48 (1982), 301–309.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. M. Day,Convolutions, means and spectra, Israel Journal of Mathematics8 (1964), 100–111.

    MATH  Google Scholar 

  8. Y. Derriennic and Y. Guivarc’h,Théorème de renouvellement pour les groupes non moyennables, Comptes Rendus de l’Académie des Sciences, Paris, Série A277 (1973), 613–615.

    MATH  MathSciNet  Google Scholar 

  9. J. Dixmier,Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.

    Google Scholar 

  10. J. Dixmier,Les algèbres d’opérateurs dans l’espace hilbertien, Gauthier-Villars, Paris, 1969.

    MATH  Google Scholar 

  11. P. Eymard,Moyennes et représentations unitaires, Lecture Notes in Mathematics300, Springer, Berlin, 1972.

    MATH  Google Scholar 

  12. J. M. G. Fell,Weak containment and induced representations of groups, Canadian Journal of Mathematics14 (1962), 237–268.

    MATH  MathSciNet  Google Scholar 

  13. F. P. Greenleaf,Invariant Means on Topological Groups, Van Nostrand, New York, 1969.

    MATH  Google Scholar 

  14. F. P. Greenleaf,Amendable actions of locally compact groups, Journal of Functional Analysis4 (1969), 295–315.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. I. Grigorchuk,Symmetrical random walks on discrete groups, inMulticomponent Random Systems (R. L. Dobrushin and Ya. G. Sinai, eds.), Advances in Probability and Related Topics, Vol.6, Marcel Dekker, New York, 1980, pp. 285–325.

    Google Scholar 

  16. Y. Guivarc’h,Quelques propriétés asymptotiques des products de matrices aléatoires, inEcole d’Eté de Probabilités de Saint-Flour VIII—1978, Lecture Notes in Mathematics774, Springer, Berlin, 1980, pp. 177–250.

    Chapter  Google Scholar 

  17. P. R. Halmos and J. von Neumann,Operator methods in classical mechanics II, Annals of Mathematics43 (1942), 332–350.

    Article  MathSciNet  Google Scholar 

  18. C. Herz,Sur le phénomène de Kunze-Stein, Comptes Rendus de l’Académie des Sciences, Paris, Série A271 (1970), 491–493.

    MATH  MathSciNet  Google Scholar 

  19. P. de la Harpe, A. G. Robertson and A. Valette,On the spectrum of the sum of generators for a finitely generated group, Israel Journal of Mathematics81 (1993), 65–96.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. de la Harpe, A. G. Robertson and A. Valette,On the spectrum of the sum of generators for a finitely generated group II, Colloquium Mathematics65 (1993), 87–102.

    MATH  Google Scholar 

  21. H. Kesten,Symmetric random walks on groups, Transactions of the American Mathematical Society92 (1959), 336–354.

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Kesten,Full Banach mean values on countable groups, Mathematica Scandinavica7 (1959), 146–156.

    MATH  MathSciNet  Google Scholar 

  23. G. Kuhn,Amenable actions and weak containment of certain representations of discrete groups, Proceedings of the American Mathematical Society122 (1994), 751–757.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Nevo,The spectral theory of amenable actions and invariants of discrete groups, in preparation.

  25. A. L. T. Paterson,Amenability, Mathematical Surveys and Monographs No.29, American Mathematical Society, Providence, RI, 1988.

    MATH  Google Scholar 

  26. G. K. Pedersen,C*-Algebras and Their Automorphism Groups, Academic Press, New York, 1979.

    MATH  Google Scholar 

  27. A. Ramsay,Virtual groups and group actions, Advances in Mathematics6 (1971), 253–322.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Renault,A Groupoid Approach to C*-Algebras, Lecture Notes in Mathematics793, Springer, Berlin, 1980.

    MATH  Google Scholar 

  29. Y. Shalom,Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Annals of Mathematics152 (2000), 113–182.

    Article  MATH  MathSciNet  Google Scholar 

  30. J. von Neumann,Zur Operatorenmethode in der Klassichen Mechanik, Annals of Mathematics33 (1932), 587–642.

    Article  MathSciNet  Google Scholar 

  31. R. J. Zimmer,Extensions of ergodic group actions, Illinois Journal of Mathematics20 (1976), 373–409.

    MATH  MathSciNet  Google Scholar 

  32. R. J. Zimmer,Hyperfinite factors and amenable ergodic actions, Inventiones Mathematicae41 (1977), 23–31.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. J. Zimmer,On the von Neumann algebra of an ergodic group action, Proceedings of the American Mathematical Society66 (1977), 289–293.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. J. Zimmer,Amenable ergodic group actions and an application to Poisson boundaries of random walks, Journal of Functional Analysis27 (1978), 350–372.

    Article  MATH  MathSciNet  Google Scholar 

  35. R. J. Zimmer,Amenable pairs of groups and ergodic actions and the associated von Neumann algebras, Transactions of the American Mathematical Society243 (1978), 271–286.

    Article  MATH  MathSciNet  Google Scholar 

  36. R. J. Zimmer,Ergodic Theory and Semisimple Groups, Birkhäuser, Basel, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anantharaman-Delaroche, C. On spectral characterizations of amenability. Isr. J. Math. 137, 1–33 (2003). https://doi.org/10.1007/BF02785954

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785954

Keywords

Navigation