Israel Journal of Mathematics

, Volume 131, Issue 1, pp 139–147 | Cite as

A new Banach space with Valdivia dual unit ball

  • Ondřej F. K. Kalenda


We give an example of a Banach space which admits no projectional resolution of the identity but whose dual unit ball in weak* topology is a Valdivia compact. This answers a question asked by M. Fabian, G. Godefroy and V. Zizler.


Banach Space Compact Space Equivalent Norm Projectional Resolution Compact Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AL]
    D. Amir and J. Lindenstrauss,The structure of weakly compact sets in Banach spaces, Annals of Mathematics88 (1968), 35–46.CrossRefMathSciNetGoogle Scholar
  2. [AMN]
    S. Argyros, S. Mercourakis and S. Negrepontis,Functional analytic properties of Corson compact spaces, Studia Mathematica89 (1988), 197–229.MATHMathSciNetGoogle Scholar
  3. [DG]
    R. Deville and G. Godefroy,Some applications of projective resolutions of identity, Proceedings of the London Mathematical Society67 (1993), 183–199.MATHCrossRefMathSciNetGoogle Scholar
  4. [DGZ]
    R. Deville, G. Godefroy and V. Zizler,Smoothness and Renormings in Banach Spaces, Pitman Monographs 64, Longman Sci. Tech., Harlow, 1993.MATHGoogle Scholar
  5. [FGZ]
    M. Fabian, G. Godefroy and V. Zizler,A note on Asplund generated Banach spaces, Bulletin de l’Académie Polonaise des Sciences47 (1999), 221–230.MATHMathSciNetGoogle Scholar
  6. [HHZ]
    P. Habala, P. Hájek and V. Zizler,Introduction to Banach Spaces, Lecture notes, Matfyzpress, Prague, 1996.MATHGoogle Scholar
  7. [K1]
    O. Kalenda,Continuous images and other topological properties of Valdivia compacta, Fundamenta Mathematicae162 (1999), 181–192.MATHMathSciNetGoogle Scholar
  8. [K2]
    O. Kalenda,A characterization of Valdivia compact spaces, Collectanea Mathematica51 (2000), 59–81.MATHMathSciNetGoogle Scholar
  9. [K3]
    O. Kalenda,Valdivia compacta and equivalent norms, Studia Mathematica138 (2000), 179–191.MATHMathSciNetGoogle Scholar
  10. [K4]
    O. Kalenda,Valdivia compact spaces in topology and Banach space theory, Extracta Mathematicae15 (2000), 1–85.MATHMathSciNetGoogle Scholar
  11. [K5]
    O. Kalenda,Note on Markushevich bases in subspaces and quotients of Banach spaces, Bulletin de l’Académie Polonaise des Sciences, to appear.Google Scholar
  12. [L1]
    J. Lindenstrauss,On reflexive spaces having the metric approximation property, Israel Journal of Mathematics3 (1965), 199–204.MATHMathSciNetCrossRefGoogle Scholar
  13. [L2]
    J. Lindenstrauss,On nonseparable reflexive Banach spaces, Bulletin of the American Mathematical Society72 (1966), 967–970.MATHMathSciNetGoogle Scholar
  14. [N]
    N. Noble,The continuity of functions on Cartesian products, Transactions of the American Mathematical Society149 (1970), 187–198.MATHCrossRefMathSciNetGoogle Scholar
  15. [PY]
    A. N. Plichko and D. Yost,Complemented and uncomplemented subspaces of Banach spaces, Extracta Mathematicae15 (2000), 335–371.MATHMathSciNetGoogle Scholar
  16. [V1]
    M. Valdivia,Resolutions of the identity in certain Banach spaces, Collectanea Mathematica39 (1988), 127–140.MATHMathSciNetGoogle Scholar
  17. [V2]
    M. Valdivia,Projective resolutions of the identity in C(K) spaces, Archiv der Mathematik54 (1990), 493–498.MATHCrossRefMathSciNetGoogle Scholar
  18. [V3]
    M. Valdivia,Simultaneous resolutions of the identity operator in normed spaces, Collectanea Mathematica42 (1991), 265–285.MATHMathSciNetGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2002

Authors and Affiliations

  1. 1.Department of Mathematical Analysis, Faculty of Mathematics and PhysicsCharles UniversityPraha 8Czech Republic

Personalised recommendations