Il Nuovo Cimento A (1965-1970)

, Volume 80, Issue 3, pp 241–246 | Cite as

Remarks on solutions of equations of the gradient Weyl’s gauge field

  • M. Nishioka


By taking account of the condition in Weyl’s geometry that the length scale of any vector changes under parallel transfer, we will study the solutions of equations of the gradient. Weyl’s gauge field.

PACS. 11.10.

Field theory 

Замечания о решениях уравнений для градиентного калибровочного поля Вейля


Учитывая условие в геометрии Вейля, что масштаб длины для любого вектора изменяется при параллеляном переносе, мы исследуем решения градиентного калиборовочного поля Вейля.


Tenendo conto della condizione nella geometria di Weyl che la lunghezza di scala di qualsiasi vettore cambia nel trasferimento parallelo, si studiano le soluzioni delle equazioni del campo di gauge di Weyl gradiente.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    H. Weyl:Sitzungber. Preuss. Akad. Wiss. Phys. Math. Kl., 465 (1918).Google Scholar
  2. (2).
    M. Nishioka:Nuovo Cimento A, in press.Google Scholar
  3. (3).
    R. Utiyama:Prog. Theor. Phys.,53, 565 (1975).MATHMathSciNetCrossRefADSGoogle Scholar
  4. (4).
    M. Nishioka:Nuovo Cimento A,75, 80 (1983).MathSciNetCrossRefADSGoogle Scholar
  5. (5).
    A. Bregman:Prog. Theor. Phys.,49, 667 (1973).CrossRefADSGoogle Scholar
  6. (6).
    M. Nishioka:Proceedings of the First Workshop on Hadronic Mechanics (Hadronic Press., Ma., 1983), in press.Google Scholar
  7. (7).
    V. de Alfaro, S. Fubini andG. Furlan:Nuovo Cimento A,50, 523 (1979).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1984

Authors and Affiliations

  • M. Nishioka
    • 1
  1. 1.Department of Physics, Faculty of Liberal ArtsYamaguchi UniversityYamaguchiJapan

Personalised recommendations