Skip to main content
Log in

The stress-related production of the activePhotinus pyralis and luciolaMingrelica firefly luciferases inEscherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The kinetics ofPhotinus pyralis andLuciola mingrelica luciferase gene expression was studied on plasmids with the thermoinducible λPr promoter inEscherichia coli by SDS-gel electrophoresis of cell lysates to follow luciferase protein-synthesized, enzyme immunoassay (EIA) to follow native enzyme conformer, and the luciferase activity assay.E. coli cells were cultivated at temperature schemes 28–42–21°C or 28–21°C, or at alkali pH shift. In the cases of thermoinduction and pH shift, the luciferase expressions have similar features. The 3-h thermoinduction (42°C) followed by the incubation at 21°C, for 10 h resulted in the maximal amount of the luciferase protein of 4–5% of the total cell proteins. The yield did not change further. The amount of native luciferase conformer and the luciferase activity started to grow after incubation for 10 h at 21°C and reached the maximum after 50–60 h when the synthesized luciferase protein adopted the native-like conformation. At the same time, only 50% of the latter appeared to be catalytically active. An increase in the enzymatic activity correlates with an increase in the intracellular pH and ATP content. Intracellular metabolic reactions were shown to play a role in the conformational changes of the enzyme in a postthermoinduction period, and a possible mechanism of this effect is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caulcott, C. L., Lilley G., Wright, E. M., Robinson, M. K., and Yarranton, G. T. (1985),J. Gen. Microbiol. 131, 3355–3365.

    CAS  Google Scholar 

  2. Suo, W. L. and Milman, G. (1983),J. Biol. Chem. 258, 7469–7475.

    Google Scholar 

  3. Remaunt, E., Tsao, Hs., and Fiers, W. (1983),Gene 22, 103–113.

    Article  Google Scholar 

  4. Tolentino, G. J. and Ka-Jin, S. (1988),Biotechnol. Lett. 10, 373–376.

    Article  CAS  Google Scholar 

  5. Tomich, C. S., Kaytes, P. S., Olsen, M. K., and Patel, H. (1988),Plasmid 20, 107–170.

    Article  Google Scholar 

  6. Subramani, S. and DeLuca, M. (1988),Gen. Eng. Principles and Methods 10, 75–89.

    CAS  Google Scholar 

  7. Ugarova, N. N. (1993),Appl. Biochem. Microbiol. (Engl. Trans, from Russian)29, 135–144.

    Google Scholar 

  8. Kutuzova, G. D., Skripkin, E. A., Belogurova, N. G., Skrjabin, G. A., Ugarova, N. N., and Varfolomeev, S. D. (1990),Dokl. Akad. Nauk SSSR 314, 757–761.

    CAS  Google Scholar 

  9. Hickey, E. W. and Hirshfield, I. N. (1990),Appl. Environ. 56, 1038–1045.

    CAS  Google Scholar 

  10. Devine, J., Kutuzova, G. D., Green, V., Ugarova, N. N., and Baldwin, T. O. (1993),Biochim. Biophys. Acta 1173, 121–132.

    CAS  Google Scholar 

  11. DeWet, J. R., Wood, K. V., Helinski, D. R., and DeLuca, M. (1985),Proc. Natl. Acad. Sci. USA 82, 7870–7873.

    Article  Google Scholar 

  12. Talebarovskaya, I. K., Katcova, V. A., Rizhova, V. V., Schogolev, A. A., and Berezin, I. V. (1983), Method of D-luciferin synthesis. USSR patent no. 1192324.

  13. Dementyeva, E. I., Kutuzova, G. D., and Ugarova, N. N. (1989),Moscow Universitet Chem. Bull. (Engl. trans.)44, 69–73.

    Google Scholar 

  14. King, J. and Laemmli, U. K. (1971),J. Mol. Biol. 62, 465–473.

    Article  CAS  Google Scholar 

  15. Puchkov, E. O., Bulatov, I. S., and Zinchenko, V. P. (1983),FEMS Microbiol. Lett. 20, 41–45.

    Article  CAS  Google Scholar 

  16. Brovko, L. Yu., Belyaeva, E. I., and Ugarova, N. N. (1982),Biochemistry (Engl. trans. ofBiokhimiya) 47, 633–639.

    Google Scholar 

  17. Shirano, J. and Shibata, D. (1990)),FEBS Lett. 271, 128–130.

    Article  CAS  Google Scholar 

  18. Shein, C. H. and Noteborn, M. H. (1988),Biotechnology 6, 291–294.

    Article  Google Scholar 

  19. Strause, L. G. and Deluca, M. (1981),Insect Biochem. 11, 417–422.

    Article  Google Scholar 

  20. Slonczewski, J. L., Rosen, B. P., Alger, J. R., and Macnab, R. M. (1981),Natl. Acad. Sci. USA 78, 6271–6275.

    Article  CAS  Google Scholar 

  21. Navon, G., Ogawa, S., Shulman, R. G., and Jamane, T. (1977),Proc. Natl. Acad. Sci. USA 74, 888–891.

    Article  CAS  Google Scholar 

  22. Haydon, D. A. and Hladky, S. B. (1972),Quart. Rev. Biophys. 5, 187–282.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leont’eva, O., Kutuzova, G., Skripkin, E. et al. The stress-related production of the activePhotinus pyralis and luciolaMingrelica firefly luciferases inEscherichia coli . Appl Biochem Biotechnol 61, 109–122 (1996). https://doi.org/10.1007/BF02785693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785693

Index entries

Navigation