Skip to main content
Log in

Comparison of batchstirred and electrospray reactors for biodesulfurization of dibenzothiophene in crude oil and hydrocarbon feedstocks

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biological removal of organic sulfur from petroleum feedstocks offers an attractive alternative to conventional thermochemical treatment, because of the mild operating conditions afforded by the biocatalyst. In order for biodesulfurization to realize commercial success, reactors must be designed that allow for sufficient liquid-liquid and gas-liquid mass transfer, while simultaneously reducing operating costs. Electro-spray bioreactors were investigated for use as desulfurization reactors because of their reported operational cost savings relative to mechanically agitated reactors. Unlike batch-stirred reactors, which mix the biocatalystcontaining aqueous phase with the organic feedstock by imparting momentum to the entire bulk solution, electro-spray reactors have the potential for tremendous cost savings, creating an emulsion <5 (μm in diameter, at a cost of only 3 W/L. Power law relationships indicate that mechanically stirred reactors would require 100-1000-fold more energy to create such a fine emulsion, but these relationships generally do not account for the effect of endogenously produced surfactant in the system. Here, the rates dibenzothiophene (DBT) oxidation to 2-hydroxybiphenyl (2-HBP) in hexadecane, byRhodococcus sp IGTS8 are compared in the two reactor systems. Desulfurization rates ranged from 1.0 to 5.0 mg 2-HBP/(dry g cells · h), independent of the reactor employed. The batch-stirred reactor was capable of forming a very fine emulsion in the presence of the biocatalyst IGTS8, similar to that formed in the emulsion phase contactor (EPTM), presumably because the biocatalyst produces its own surfactant. Although EPC did not prove to be advantageous for the IGTS8 desulfurization system, it may prove advantageous for systems that do not produce surface-active bioagents, in addition to being mass-transport limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Constanti, M., Giralt, J., and Bordons, A. (1994),World J. Microbiol. Biotechnol. 10, 510–516.

    Article  CAS  Google Scholar 

  2. Finnerty, W. R. (1993),Fuel 72, 1631–1634.

    Article  CAS  Google Scholar 

  3. Kayser, K. J., Bielaga-Jones, B. A., Jackowski, K., Odusan, O., and Kilbane, J. J. (1993),J. Gen. Microbiol. 139, 3123–3129.

    CAS  Google Scholar 

  4. Kim, T. S., Kim, H. Y., and Kim, B. H. (1990),Biotechnol. Lett. 12, 757–760.

    Article  CAS  Google Scholar 

  5. Lee, M. K., Senius, J. D., and Grossman, M. J. (1995),Appl. Environ. Microbiol. 61, 4362–4366.

    CAS  Google Scholar 

  6. Lin, M. S., Premuzic, E. T., Yablon, J. H., and Zhou, W. M., (1996),Appl. Biochem. Biotechnol. 57/58, 659–664.

    Article  CAS  Google Scholar 

  7. Monticello, D. J. (1994),Hydrocarbon Processing February, 39–45.

  8. Ohshiro, T., Hine, Y., and Izumi, Y. (1994),FEMS Microbiol, Lett. 118, 341–344.

    Article  CAS  Google Scholar 

  9. Ohshiro, T., Hirata, T., and Izumi, Y. (1995),Appl. Microbiol. Biotechnol. 44, 249–252.

    Article  CAS  Google Scholar 

  10. Shernnan, J. L. (1996),J. Chem. Tech. Biotechnol. 67, 109–123.

    Article  Google Scholar 

  11. Sorokin, D. Y. (1993),Microbiology (NY). 62, 575–581.

    Google Scholar 

  12. Wang, P. and Krawiec, S. (1994),Arch. Microbiol. 161, 266–271.

    Article  CAS  Google Scholar 

  13. Premuzic, E. T., Lin, M. S., Jin, J. Z., Manowitz, B., and Racaniello, L. (1993). inBiohydrometallurgical Technologies Torma, A. E., Apel, M. L., and Briarley, C. L. eds. Minerals, Metals, and Materials Society, Warrendale, PA, pp. 401–413.

    Google Scholar 

  14. Denome, S. A., Oldfield, C., Nash, L. J., and Young, K. D. (1994),J. Bacteriol. 176, 6707–6716.

    CAS  Google Scholar 

  15. Kim, T. S., Kim, H. Y., and Kim, B. H. (1990),Biotechnol. Lett. 12, 757–760.

    Article  CAS  Google Scholar 

  16. Oshiro, T., Kanbayashi, Y., Hine, Y., and Izumi, Y. (1995),Biosci. Biotech. Biochem. 59, 1349–1351.

    Article  Google Scholar 

  17. Vazquez-Duhalt, R., Westlake, D. W. S. and Fedorak, P. M. (1993),Enzyme Microb. Technol. 15, 494–499.

    Article  CAS  Google Scholar 

  18. Gray, K. A., Pogrebinsky, O. S., Mrachko, G. T., Xi, L., Monticello, D. J., and Squires, C. (1996),Nature Biotechnol. 14, 1705–1709.

    Article  CAS  Google Scholar 

  19. Dounias, G. A. and Stavropoulos, K. D. (1995), Economic Feasibility of Biochemically Upgrading Heavy Crudes. Brookhaven National Laboratory, Upton, NY.

    Google Scholar 

  20. Kilbane, J. J. and Bielaga, B. A. (1990),Chemtech. December, 747–751.

  21. Olson, E. S., Stanley, D. C., and Gallagher, J. R. (1993),Energy Fuels 7, 159–164.

    Article  CAS  Google Scholar 

  22. Omori, T., Saiki, Y., Kasuga, K., and Kodama, T. (1995),Biosci. Biotech. Biochem. 59, 1195–1198.

    CAS  Google Scholar 

  23. Kim, H. Y., Kim, T. S., and Kim, B. H. (1990),Biotechnol. Lett. 12, 761–764.

    Article  CAS  Google Scholar 

  24. Lizama, H. M., Wilkins, L. A., and Scott, T. C. (1995),Biotechnol. Lett. 17, 113–116.

    Article  CAS  Google Scholar 

  25. Kim, B. H., Kim, H. Y., Kim, T. S., and Park, D. H. (1995),Fuel Processing Technol. 43, 87–94.

    Article  CAS  Google Scholar 

  26. Kaufman, E. N., Harkins, J. B., Rodriguez, M., Selvaraj, P. T., Tsouris, C., and Murphy, S. E. (1997),Fuel Processing Technol. 52, 127–144.

    Article  CAS  Google Scholar 

  27. Almarsson, O., and Klibanov, A. M. (1996),Biotechnol. Bioeng. 49, 87–92.

    Article  CAS  Google Scholar 

  28. Scott, C. D., Scott, T. C., Blanch, H. W., Klibanov, A. M., and Russel, A. J. (1995),Bioprocessing in Nonaqueous Media Critical Needs and Opportunities. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  29. Woodward, C. A. and Kaufman, E. N. (1996),Biotechnol. Bioeng. 52, 423–428.

    Article  CAS  Google Scholar 

  30. Perry, R. H., Green, D. W., and Maloney, J. O., eds (1984),Perry’s Chemical Engineering Handbook, 6th ed. 1984, McGraw-Hill, New York, p. 2336.

    Google Scholar 

  31. Scott, T. C. and Sisson, W. G. (1988),Separation Sci. Technol. 23, 1541–1550.

    Article  CAS  Google Scholar 

  32. Chemineer (1988),Kenics Static Mixers KTEK Series. North Andover, MA, p. 32.

    Google Scholar 

  33. Byers, C. H. and Ammi, A. (1995),Chem. Eng. Prog. 91, 63.

    CAS  Google Scholar 

  34. Kowalski, W. and Ziolkowski, Z. (1981),Int. Chem. Eng. 21, 323.

    Google Scholar 

  35. Martin, L., Vignet, P., Fombarlet, C., and Lancelot, F. (1983),Separation Sci. Technol. 18, 1455.

    Article  CAS  Google Scholar 

  36. Scott, T. C. and Wham, R. M. (1989),Ind. Eng. Chem. Res. 28, 94.

    Article  CAS  Google Scholar 

  37. Scott, T. C., DePaoli, D. W., and Sisson, W. G. (1994),Ind. Eng. Chem. Res. 33, 1237–1244.

    Article  CAS  Google Scholar 

  38. Thorton, J. D. (1968),Rev. Pure Appl. Chem. 18, 197.

    Google Scholar 

  39. Ptasinski, K. J. and Kerkhof, P. J. (1992),Separation Sci. Technol. 27, 995.

    Article  CAS  Google Scholar 

  40. Warren, K. W., and Prestridge, F. L. (1988), inNational Petroleum Refiners Association Annual Meeting. National Petroleum Refiners Association, San Antonio, TX, Report No. AM-88–78.

  41. Schwartz, E., Rock, K., Byeseda, J. and Pehler, R. (1992), inFirst Separations Division Topical Conference on Separations Technologies: New Developments and Opportunities. American Institute of Chemical Engineers, New York, p. 236.

    Google Scholar 

  42. Wood, T. S., Cernohlavek, L. G., Grant, D. T., Kelly, K. P., Lochhaas, P. D., Maynard, A. E., et al. (1992),First Separations Division Topical Conference on Separations Technologies: New Developments and Opportunities, American Institute of Chemical Engineers, New York, p. 231.

    Google Scholar 

  43. Lizama, H. M., Scott, T. C., and Scott, C. D. (1995),Apparatus and Method for the Desulfurization of Petroleum by Bacteria. US Patent 5,458,752.

  44. Finnerty, W. R., and Singer, M. E. (1984),Dev. Microbiol. 25, 31–46.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric N. Kaufman.

Additional information

The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-96OR22464. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufman, E.N., Harkins, J.B. & Borole, A.P. Comparison of batchstirred and electrospray reactors for biodesulfurization of dibenzothiophene in crude oil and hydrocarbon feedstocks. Appl Biochem Biotechnol 73, 127–144 (1998). https://doi.org/10.1007/BF02785650

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785650

Index Entries

Navigation