Skip to main content
Log in

Improvement of lysine production by analog-sensitive and auxotroph mutants of the acetylene-utilizing bacterium gordona bronchialis (Rhodococcus bronchialis)

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An acetylene utilizingGordona (Rhodococcus) bronchialis strain, screened for the production of fine chemicals, was found to be capable of producing small amounts of lysine. Attempts to produce amino-acid analogresistant and/or sensitive mutants and auxotrophs of this strain with increased lysine production were made following UV-irradiation orN-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treatment. The bacterium exhibited surprisingly high resistance levels to the aforementioned mutagens which is attributed to highly effective inborn-repair systems. Natural resistance to high levels ofS-(2-aminoethyl)-l-cysteine (AEC) (2%) was observed, in contrast withd, l-aspartic acid hydroxamate (AAH),l-lysine hydroxamate (LHX) and β-fluoropyruvate (FP). A variety of amino-acid analog-resistant (AAHr, LHXr) or analog-sensitive (FPs) mutants were produced following UV-irradiation or MNNG treatment. Similarly, a large number of auxotrophs (68) of different types were also obtained. From these, one FPs mono-auxotroph and two poly-auxotrophs (with at least one requirement for the aspartic acid family) showed an increased lysine production (~1.8 g/L) comparable (4 g/L) to that found in other bacteria capable of utilizing long-chain hydrocarbons(1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chatterjee, M., Chatterjee, S.P., and White, P. J. (1981),FEMS Microbiol. Lett. 12, 163–166.

    Article  CAS  Google Scholar 

  2. Tosaka, O. and Takinami, K. (1986), inProgress in Industrial Microbiology, vol.24, Aida, K., Chibata, I., Nakayama, K., Takinami, K., Yamada, H., eds., Elsevier, Amsterdam, pp. 152–172.

    Google Scholar 

  3. Liu, Y. (1987), in Studies on the fermentative production of l-Lysine.Report Taiwan Sugar Res. Inst. 116, 36–54.

    Google Scholar 

  4. Plachy, J. (1989),Acta Biotechnol. 9, 291–293.

    Article  CAS  Google Scholar 

  5. Costa-Ferreira, M. and Duarte, J. C. (1992),Biotechnol. Lett. 14, 1025–1028.

    Article  CAS  Google Scholar 

  6. Hartmans, S., de Bont, J. A. M., and Harder, W. (1989),FEMS Microbiol. Rev. 63, 235–264.

    Article  CAS  Google Scholar 

  7. Birch-Hirschfeld, L. (1932),Zentralblatt fur Bakteriol. II Abt. 86, 113–118.

    Google Scholar 

  8. Kanner, D. and Bartha, R. (1979),J. Bacteriol. 139, 225–230.

    CAS  Google Scholar 

  9. De Bont, J. A. M. and Peck, M. W. (1980),Arch. Microbiol. 127, 99–104.

    Article  Google Scholar 

  10. Flouri, F. (1984), Ph.D. thesis, Agricultural University of Athens, Greece.

    Google Scholar 

  11. De Bont, A. M. and Mulder, E. G. (1974),J. Gen. Microbiol. 83, 113–121.

    Google Scholar 

  12. Bryant, M. P. (1972),Amer. J. Clin. Nutr. 25, 1324–1328.

    CAS  Google Scholar 

  13. Typas, M. A. and Galani, I. (1992),Genetica 87, 37–45.

    Article  CAS  Google Scholar 

  14. Carlton, B. C. and Brown, B. T. (1981), inManual of Methods for General Microbiology, Gerhardt, P., Murray, G. E., Costilov, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., and Phillips, G. B., eds., American Society for Microbiology, Washington D.C.

    Google Scholar 

  15. Clowes, R. C. and Hayes, W. (1968),Experiments in Microbial Genetics, ed. Blackwell Scientific Publication Oxford, England, 1st ed.

    Google Scholar 

  16. Shimura, Y. and Vogel, H. J. (1966),Bioch. Biophys. Acta 118, 396–404.

    CAS  Google Scholar 

  17. Gaillardin, C. M., Sylvestre, G., and Heslot, H. (1975),Arch. Microbiol. 104, 89–94.

    Article  CAS  Google Scholar 

  18. Tosaka, O., Hirakawa, H., Takinami, K., and Hirose, Y. (1978),Agric. Biol. Chem. 42, 1501–1506.

    CAS  Google Scholar 

  19. Ozaki, H., and Shiio, I. (1983),Agric. Biol. Chem. 47, 1569–1576.

    CAS  Google Scholar 

  20. Shiio, I., Sugimoto, S., and Toride, Y. (1984),Agric. Biol. Chem. 48, 1551–1558.

    Google Scholar 

  21. Sprenger, G. A., Typas, M. A., and Drainas, C. (1993),World J. Microbiol Biotechnol. 9, 17–24.

    Article  CAS  Google Scholar 

  22. Sen, S. K. and Chatterjee, S.P. (1983),Fol. Microbiol. 28, 292–300.

    CAS  Google Scholar 

  23. Nakayama, K. (1985), in Comprehensive Biotechnology, ed. Moo-Yang.,3, 607–620.

  24. Tosaka, O., Yoshihara, Y., Ikeda, S., and Takinami, K. (1985),Agric. Biol. Chem. 49, 1305–1312.

    CAS  Google Scholar 

  25. Sano, K., and Shiio, I. (1971),J. Gen. Appl. Microbiol. 17, 97–113.

    CAS  Google Scholar 

  26. Lunts, M. G., Gusyatiner, M. M., Korteva, A. V., and Zhdanova, N. I. (1986),Prikl. Biokh. Mikrobiol. 22, 96–101.

    CAS  Google Scholar 

  27. Aida, K. (1986), inProgress in Industrial Microbiology,24, Aida, K., Chibata, I., Nakayama, K., Takinami, K., and Yamada, H., eds., Elsevier, Amsterdam, pp. xxi-xv.

    Google Scholar 

  28. Cremer, J., Treptow, C., Eggeling, L., and Sahm, H. (1988),J. Gen. Microbiol. 134, 3221–3229.

    CAS  Google Scholar 

  29. Patek, M., Krumbach, K., Eggeling, L., and Sahm, H. (1994),Appl. Environ. Microbiol. 60, 133–140.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyriacou, A., Balis, C. & Typas, M.A. Improvement of lysine production by analog-sensitive and auxotroph mutants of the acetylene-utilizing bacterium gordona bronchialis (Rhodococcus bronchialis). Appl Biochem Biotechnol 66, 281–289 (1997). https://doi.org/10.1007/BF02785594

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785594

Index Entries

Navigation