Applied Biochemistry and Biotechnology

, Volume 66, Issue 3, pp 249–262 | Cite as

Analysis of biomass cellulose in simultaneous saccharification and fermentation processes

  • Yun-Chin Chung
  • Alan Bakalinsky
  • Michael H. Penner
Original Articles


A direct method for determining the cellulose content of biomass residues resulting from simultaneous saccharifiaction and fermentation (SSF) experiment has been developed and evaluated. The method improves on classical cellulose assays by incorporating the enzymatic removal of yeast glucans from the biomass residue prior to acid hydrolysis and subsequent quantification of cellulose-derived glucose. An appropriate cellulasefree, commercially available, yeast-lysing enzyme preparation fromCytophaga was identified. A freeze-drying step was identified as necessary to render the SSF yeast cells susceptible to enzymatic lysis. The method was applied to the analysis of cellulose and yeast-associated glucans in SSF residues from three pretreated feedstocks; hybrid poplar, switchgrass, and cornstover. Cellulose assays employing the lysing-enzyme preparation demonstrated relative errors up to 7.2% when yeast-associated glucans were not removed prior to analysis of SSF residues. Enzymatic lysis of SSF yeast cells may be viewed as a general preparatory procedure to be used prior to subsequent chemical and physical analysis of SSF residues.

Index Entries

Saccharification fermentation yeast cellulose lysing enzyme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spindler, D. D., Wyman, C. E., and Grohmann, K. (1991),Appl. Biochem. Biotechnol. 28/29, 773–786.Google Scholar
  2. 2.
    Shan, M. M. and Lee, Y. Y. (1992),Appl. Biochem. Biotechnol. 34/35, 557–568.Google Scholar
  3. 3.
    Wyman, C. E., Spindler, D. D., and Grohmann, K. (1992),Biomass Bioenerg. 3, 301–307.CrossRefGoogle Scholar
  4. 4.
    Vinzant, T., Panfick, L., Nagle, N. J., Ehrman, C. I., Reynolds, J. B., and Himmel, M. E. (1994),Appl. Biochem. Biotechnol. 45/46, 611–626.Google Scholar
  5. 5.
    Spindler, D. D., Wyman, C. E., and Grohmann, K. (1989a),Biotechnol. Bioeng. 34, 189–195.CrossRefGoogle Scholar
  6. 6.
    Spindler, D. D., Wyman, C. E., Grohmann, K., and Mohagheghi, A. (1989b),Appl. Biochem. Biotechnol. 20/21, 529–540.Google Scholar
  7. 7.
    Mohagheghi, A., Tucker, M., Grohman, K., and Wyman, C. (1991),Appl. Biochem. Biotechnol. 33, 67–81.CrossRefGoogle Scholar
  8. 8.
    Meyers, S. G. (1978),Am. Inst. Chem. Eng. 184 (74), 79–84.Google Scholar
  9. 9.
    Spindler, D. D., Wyman, C. E., Mohagheghi, A., and Grohmann (1988),Appl. Biochem. Biotechnol. 16/17, 279–293.CrossRefGoogle Scholar
  10. 10.
    Kreutzfeldt, C. and Witt, C. C. (1991), inSaccharomyces, vol. Tuite, M. F., and Oliver, S. G., eds., Plenum Press, New York, NY, pp. 5–58.Google Scholar
  11. 11.
    Fleet, G. H. (1991), inThe Yeasts, vol. 4, Rose, A. H. and Harrison, J. S., eds, Academic Press, San Diego, CA, pp. 199–277.Google Scholar
  12. 12.
    Wyman, C. E., Spindler, D. D., Grohmann, K., and Lastick, S. M. (1986),Biotechnol. Bioeng. Symp. 17, 221–238.Google Scholar
  13. 13.
    Grethlein, H. E. and Converse, A. O. (1991),Bioresource Technol. 77–82.Google Scholar
  14. 14.
    Fan, L. T., Lee, Y, H., and Beardmore, D. H. (1980), inProceeding of Bioconversion and Biochemical Engineering Symposium, vol. 1, Ghose, T. K., ed., Indian Institute of Technology, Hauzkhas, New Delhi, India, pp. 233–259.Google Scholar
  15. 15.
    Ghose, T. K. (1988),Pure Appl. Chem. 59, 257–268.CrossRefGoogle Scholar
  16. 16.
    Fenske, J. J. (1994), Master’s thesis, Oregon State University, Corvallis, Oregon.Google Scholar
  17. 17.
    Philippidis, G. P., Smith, T. K., and Schmidt, S. L. (1993), SSF experimental protocols: Lignocellulosic biomass hydrolysis and fermentation.Google Scholar
  18. 18.
    Moore, W. E. and Johnson, D. B. (1967), Procedures for the chemical analysis of wood and wood products, USDA Forest Products Laboratory, Madison, WI.Google Scholar
  19. 19.
    Ehrman, C. I. and Himmel, M. E. (1994), Biotechnol. Tech.8, 99–104.CrossRefGoogle Scholar
  20. 20.
    Tuite, M. F. and Oliver, S. G. (1991), inSaccharomyces, Tuite, M. F. and Oliver, S. G., eds., Plenum Press, New York, NY, pp. 283–320.Google Scholar
  21. 21.
    Sigma Chemical Co. (1996),Product Information Catalog.Google Scholar
  22. 22.
    Stainer, R. Y., Adelberg, E. A., and Ingraham, J. L. (1976),The Microbial World, 4th ed., Prentice-Hall, Inc., New Jersey.Google Scholar
  23. 23.
    Tatsumoto, K., Baker, J. O., Tucker, M. P., Oh, K. K., Mohaghehi, A., Grohmann, K., and Himmel, M. E. (1988),Appl. Biochem. Biotechnol. 18, 159–173.CrossRefGoogle Scholar
  24. 24.
    Suttcliffe, R. and Saddler, J. N. (1986),Biotechnol. Biogeng. Symp. 17, 749–762.Google Scholar
  25. 25.
    Sinitsy, A. P. Bungay, H. R. and Clesceri, L. S. (1983),Biotechnol. Bioeng.XXV, 1393–1399.CrossRefGoogle Scholar
  26. 26.
    Sommer, A. and Lewis, A. J. (1971),J. Gen Microb. 68, 327–335.Google Scholar
  27. 27.
    Souzu, H. (1973),Cryobiology 10, 427–431.CrossRefGoogle Scholar
  28. 28.
    Van Steveninck, J. and Ledeboer, A. M. (1974),Biochem. Biophys. Acta. 352, 64–70.CrossRefGoogle Scholar
  29. 29.
    Kruuv, J., Lopock, J. R., and Keith, A. D. (1978),Cryobiology. 15, 73–79.CrossRefGoogle Scholar
  30. 30.
    Eddy, A. A. and Williamson, D. H. (1957),Nature. 179, 1252–1253.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Yun-Chin Chung
    • 1
  • Alan Bakalinsky
    • 1
  • Michael H. Penner
    • 1
  1. 1.Department of Food Science and TechnologyOregon State UniversityCorvallis

Personalised recommendations