Israel Journal of Mathematics

, Volume 128, Issue 1, pp 221–246 | Cite as

Minimal entropy rigidity for foliations of compact spaces

  • Jeffrey Boland
  • Christopher Connell


We formulate and prove a foliated version of a theorem of Besson, Courtois, and Gallot establishing the minimal entropy rigidity of negatively curved locally symmetric spaces. One corollary is a foliated version of Mostow’s rigidity theorem.


Symmetric Space Universal Cover Einstein Metrics Curve Manifold Coarea Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCG95]
    G. Besson, G. Courtois and S. Gallot,Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geometric and Functional Analysis5 (1995), 731–799.MATHCrossRefMathSciNetGoogle Scholar
  2. [BCG96]
    G. Besson, G. Courtois and S. Gallot,Minimal entropy and mostow’s rigidity theorems, Ergodic Theory and Dynamical Systems16 (1996), 623–649.MATHMathSciNetCrossRefGoogle Scholar
  3. [Bes87]
    A. L. Besse,Einstein Manifolds, Springer-Verlag, Berlin, 1987.MATHGoogle Scholar
  4. [Con94]
    A. Connes,Noncommutative Geometry, Academic Press Inc., San Diego, CA, 1994.MATHGoogle Scholar
  5. [Eb96]
    P. Eberlein,Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University of Chicago Press, 1996.Google Scholar
  6. [FJ93]
    F. T. Farrell and L. E. Jones,Topological rigidity for compact non-positively curved manifolds, inDifferential Geometry: Riemannian Geometry (Los Angeles, CA, 1990), American Mathematical Society, Providence, RI, 1993, pp. 229–274.Google Scholar
  7. [FM75]
    J. Feldman and C. C. Moore,Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Bulletin of the American Mathematical Society81 (1975), 921–924.MATHMathSciNetGoogle Scholar
  8. [Hur94]
    S. Hurder,Coarse geometry of foliations, inGeometric Study of Foliations (Tokyo, 1993), World Science Publishing, River Edge, NJ, 1994, pp. 35–96.Google Scholar
  9. [Man79]
    A. Manning,Topological entropy for geodesic flows, Annals of Mathematics (2)110 (1979), 567–573.CrossRefMathSciNetGoogle Scholar
  10. [Min94]
    Y. N. Minsky,On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds, Journal of the American Mathematical Society7 (1994), 539–588.MATHCrossRefMathSciNetGoogle Scholar
  11. [Pat76]
    S. J. Patterson,The limit set of a Fuchsian group, Acta Mathematica136 (1976), 241–273.MATHCrossRefMathSciNetGoogle Scholar
  12. [PZ89]
    P. Pansu and R. Zimmer,Rigidity of locally homogeneous metrics of negative curvature on the leaves of a foliation, Israel Journal of Mathematics68 (1989), 56–62.MATHCrossRefMathSciNetGoogle Scholar
  13. [Sul79]
    D. Sullivan,The density at infinity of a discrete group of hyperbolic motions, Publications Mathématiques de l’Institut des Hautes Études Scientifiques50 (1979), 225–250.Google Scholar
  14. [Zim82]
    R. J. Zimmer,Ergodic theory, semisimple Lie groups, and foliations by manifolds of negative curvature, Publications Mathématiques de l’Institut des Hautes Études Scientifiques55 (1982), 37–62.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2002

Authors and Affiliations

  • Jeffrey Boland
    • 1
  • Christopher Connell
    • 2
  1. 1.Risk Management AnalyticsBank of Nova ScotiaTorontoCanada
  2. 2.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations