Biological Trace Element Research

, Volume 2, Issue 3, pp 159–174 | Cite as

Copper (II) complex-catalyzed oxidation of NADH by hydrogen peroxide

  • Phillip C. Chan
  • Leo Kesner
Original Articles


Among various metal ions of physiological interest, Cu2+ is uniquely capable of catalyzing the oxidation of NADH by H2O2. This oxidation is stimulated about fivefold in the presence of imidazole. A similar activating effect is found for some imidazole derivatives (1-methyl imidazole, 2-methyl imidazole, andN-acetyl-L-histidine). Some other imidazole-containing compounds (L-histidine,L-histidine methyl ester, andL-carnosine), however, inhibit the Cu2+-catalyzed peroxidation of NADH. Other chelating agents such as EDTA andL-alanine are also inhibitory. Stoichiometry for NADH oxidation per mole of H2O2 utilized is 1, which excludes the possibility of a two-step oxidation mechanism with a nucleotide free-radical intermediate. About 92% of the NADH oxidation product can be identified as enzymatically active NAD+. D2O, 2,5-dimethylfuran, and 1,4-diazabicyclo [2.2.2]-octane have no significant effect on the oxidation, thus excluding1O2 as a mediator. Similarly, OH· is also not a likely intermediate, since the system is not affected by various scavengers of this radical. The results suggest that a copper-hydrogen peroxide intermediate, when complexed with suitable ligands, can generate still another oxygen species much more reactive than its parent compound, H2O2.

Index Entries

Copper (II) complex, as catalyst in H2O2 oxidation of NADH catalyst, Cu (II) in H2O2 oxidation of NADH hydrogen peroxide, Cu (II) catalysis of NADH oxidation by NADH, oxidation by Cu (II) complex and H2O2 oxidation, of NADH by Cu (II) catalyzed H2O2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. Kellogg and I. Fridovich,J. Biol. Chem.,252, 6721 (1977).PubMedGoogle Scholar
  2. 2.
    K.-L. Fong, P. B. McCay, J. L. Poyer, H. P. Misra, and B. B. Kelle,Chem. Biol. Interactions 15, 77 (1976).CrossRefGoogle Scholar
  3. 3.
    J. J. Van Hemmen and W. J. A. Meuling,Arch. Biochem. Biophys. 182, 743 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    C.-S. Lai, T. A. Grover, and L. H. Piette,Arch. Biochem. Biophys. 193, 373 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    K. Kameda, T. Ono, and Y. Imai,Biochim. Biophys. Acta 572, 77 (1979).PubMedGoogle Scholar
  6. 6.
    I. M. Goldstein and G. Weissmann,Biochem. Biophys. Res. Commun. 75, 604 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    R. E. Lynch and I. Fridovich,J. Biol. Chem. 253, 1838 (1978).PubMedGoogle Scholar
  8. 8.
    I. Smedley-MacLean and M. S. B. Pearch,Biochem. J. 25, 1252 (1931).PubMedGoogle Scholar
  9. 9.
    I. Smedley-MacLean and M. S. B. Pearch,Biochem. J. 28, 486 (1934).PubMedGoogle Scholar
  10. 10.
    J. O. Konecny,J. Am. Chem. Soc. 76, 4993 (1954).CrossRefGoogle Scholar
  11. 11.
    L. L. Ingraham,Arch. Biochem. Biophys. 81, 309 (1959).PubMedCrossRefGoogle Scholar
  12. 12.
    H. A. Gruber and E. F. Mellon,Anal. Biochem. 66, 78 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    B. C. Barrass, D. B. Coult, P. Rich, and K. J. Tutt,Biochem. Pharmacol. 23, 47 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    R. A. Lovstad,Biochem. Pharmacol. 23, 1045 (1975).CrossRefGoogle Scholar
  15. 15.
    F. Ghiretti,Arch. Biochem. Biophys. 63, 165 (1956).PubMedCrossRefGoogle Scholar
  16. 16.
    E. K. Hodgson and I. Fridovich,Biochemistry 14, 5229 (1975).Google Scholar
  17. 17.
    J. Schubert, V. S. Sharma, E. R. White, and L. S. Bergelson,J. Am. Chem. Soc. 90, 4476 (1968).PubMedCrossRefGoogle Scholar
  18. 18.
    V. S. Sharma and J. Schubert,J. Am. Chem. Soc. 91, 6291 (1969).PubMedCrossRefGoogle Scholar
  19. 19.
    V. S. Sharma, J. Schubert, H. B. Brooks, and F. Sicilio,J. Am. Chem. Soc. 92, 822 (1970).CrossRefGoogle Scholar
  20. 20.
    V. S. Sharma and J. Schubert,Inorg. Chem. 10, 251 (1971).CrossRefGoogle Scholar
  21. 21.
    R. Brigelius, R. Spottl, W. Bors, E. Lengfelder, M. Saran, and U. Weser,FEBS Lett. 47, 72 (1974).PubMedCrossRefGoogle Scholar
  22. 22.
    D. Klug-Roth and J. J. Rabani,J. Phys. Chem. 80, 588 (1976).CrossRefGoogle Scholar
  23. 23.
    R. M. Burton and M. Lamborg,Arch. Biochem. Biophys. 62, 369 (1956).PubMedCrossRefGoogle Scholar
  24. 24.
    A. O. Allen, C. J. Hochanadel, J. A. Ghormley, and T. W. Davis,J. Phys. Chem. 56, 575 (1952).CrossRefGoogle Scholar
  25. 25.
    C. Walling,Accounts Chem. Res. 8, 125 (1975).CrossRefGoogle Scholar
  26. 26.
    K. A. Schellenberg and L. Hellerman,J. Biol. Chem. 231, 547 (1958).PubMedGoogle Scholar
  27. 27.
    H. Sigel and D. B. McCormick,J. Am. Chem. Soc. 93, 2041 (1971).PubMedCrossRefGoogle Scholar
  28. 28.
    R. S. Bodaness and P. C. Chan,J. Biol. Chem. 252, 8554 (1977).PubMedGoogle Scholar
  29. 29.
    P. B. Merkel and D. R. Kearns,J. Am. Chem. Soc. 94, 7244 (1972).CrossRefGoogle Scholar
  30. 30.
    M. Anbar and P. Neta,Int. J. Applied Radiat. Isot. 18, 493 (1967).CrossRefGoogle Scholar
  31. 31.
    E. J. Land and A. J. Swallow,Biochim. Biophys. Acta 234, 34 (1971).PubMedCrossRefGoogle Scholar
  32. 32.
    B. H. J. Bielski and P. C. Chan,J. Biol. Chem. 251, 3841 (1976).PubMedGoogle Scholar
  33. 33.
    R. L. Willson,Chem. Commun. 1005 (1970).Google Scholar
  34. 34.
    B. H. J. Bielski and A. O. Allen,J. Phys. Chem. 81, 1048 (1977).CrossRefGoogle Scholar
  35. 35.
    C. E. Bayliss and W. M. Waites,J. Gen. Microbiol. 96, 401 (1976).PubMedGoogle Scholar
  36. 36.
    N. Yamamoto,Virology 38, 457 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1980

Authors and Affiliations

  • Phillip C. Chan
    • 1
  • Leo Kesner
    • 1
  1. 1.Department of BiochemistryState University of New York Downstate Medical CenterBrooklyn

Personalised recommendations