Biological Trace Element Research

, Volume 38, Issue 3, pp 301–309 | Cite as

Interaction between zinc and calcium in skeletal muscle in young growing rats

  • Magdalena J. Rossowska
  • Tetsuo Nakamoto


The purpose of the present study was to determine whether zinc and calcium could interact at the tissue level. In the first part of the study, adult rats were injected with ZnCl2 dissolved in a physiological saline solution to determine the effects of Zn on Ca levels in various tissues. In the second part of the study, weaned rats (at day 22 postnatally) were fed a diet supplemented with Zn until day 50 and were then sacrificed. In both instances, blood, brain, heart, liver, and skeletal muscle were taken and analyzed. In the Zn-injected group, the brain, heart, and liver showed no interaction between Zn and Ca. The skeletal muscle, in contrast, showed a decrease in Ca in the homogenate, whereas Zn contents showed a significant increase at the sarcoplasmic reticulum (SR). Likewise, in the Zn-supplemented group, the Zn content of the SR vesicle of the skeletal muscle showed an increase, whereas Ca content of the pellet (14,000 g), which contains cell debris, nucleus, mitochondria, and SR vesicles of this group, showed a decrease. Current findings suggest antagonistic effects between Zn and Ca on this tissue. Zn may play a critical role in cellular function through the alteration of itnracellular distribution of Ca in skeletal muscle.

Index Entries

Zinc, effect on tissue Zn and Ca subcellular distribution of Zn in the heart and skeletal muscle interaction between Zn and Ca effect of dietary Zn on tissue Ca in growing rats nutrient interaction and distribution of Zn and Ca in skeletal muscle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. F. Adham and M. K. Song,Nutr. Metab. 24, 281 (1980).PubMedGoogle Scholar
  2. 2.
    M. K. Song, N. F. Adham, and M. E. Ament,Nutr. Rep. Int. 31, 43 (1985).Google Scholar
  3. 3.
    H. Gunshin, T. Noguchi, and H. Noito,Agric. Biol. Med. 55, 2813 (1991).Google Scholar
  4. 4.
    M. K. Song and N. F. Adham,Am. J. Physiol. 234, E99 (1978).PubMedGoogle Scholar
  5. 5.
    M. K. Song, M. A. Wong, and D. B. N. Lee,Life Sci. 33, 2399 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    S. Batra,J. Cell Physiol. 82, 245 (1973).PubMedCrossRefGoogle Scholar
  7. 7.
    G. C. White II and S. T. Raynor,Biochem. Biophys. Res. Comm. 104, 1066 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Varecka, E. Peterajova, and J. Pogady,Biochim. Biophys. Acta. 856, 585 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    B. Sarria, J. Cortijo, M. Marti-Cabrera, E. Morcillo, and J. Esplugues,Brit. J. Pharmacol. 97, 19 (1989).Google Scholar
  10. 10.
    M. Nishimura,Brit. J. Pharmacol. 93, 430 (1988).Google Scholar
  11. 11.
    W. K. Harvey and T. Nakamoto,Brit. J. Nutr. 53, 57 (1988).CrossRefGoogle Scholar
  12. 12.
    L. R. Jones, M. R. Besch, Jr., J. W. Fleming, M. M. McConnaughey, and A. M. Wantanabe,J. Biol. Chem. 254, 530 (1979).PubMedGoogle Scholar
  13. 13.
    M. J. Rossowska, C. Dinh, S. B. Gottschalk, M. Yazdani, F. S. Sutton, III, and T. Nakamoto,Brit. J. Nutr. 64, 561 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    J. B. Willis,Methods of Biochemical Analysis, D. Glick, ed. John Wiley and Sons, New York, 1963, pp. 1–67.CrossRefGoogle Scholar
  15. 15.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).PubMedGoogle Scholar
  16. 16.
    J. J. Abramson, J. L. Trimm, L. Weden, and G. Salama,Proc. Natl. Acad. Sci. USA 80, 1526 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    S. D. Prabhu and G. Salama,Arch. Biochem. Biophys. 277, 47 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    H. E. Heilmaier and K. H. Summer,Arch. Toxicol. 56, 247 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    M. P. Waalkes and C. D. Klaassen,Fund. Appl. Toxicol. 5, 473 (1985).CrossRefGoogle Scholar
  20. 20.
    J. Wensink, C. H. Paays, and C. J. A. van Den Hamer,Biol. Trace Element Res. 14, 127 (1987).Google Scholar
  21. 21.
    M. K. Song, N. F. Adham, and M. E. Ament,Biol. Trace Element Res. 11, 75 (1986).CrossRefGoogle Scholar
  22. 22.
    R. G. L. Pullen, P. A. Franklin, and G. H. Hall,J. Neurochem. 56, 485 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Csermely, P. Sandor, L. Radics, and J. Samogyi,Biochem. Biophys. Res. Comm. 165, 838 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    A. P. Carvalho,J. Gen. Physiol. 51, 427 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Magdalena J. Rossowska
    • 1
  • Tetsuo Nakamoto
    • 1
  1. 1.Laboratory of Perinatal Nutrition and Metabolism, Department of PhysiologyLouisiana State University Medical CenterNew Orleans

Personalised recommendations