Biological Trace Element Research

, Volume 38, Issue 3, pp 243–250 | Cite as

Changes of CSF-Cu and -Zn in children with acute lymphoblastic leukemia

  • Jacobus P. Van Wouwe
  • Margreet H. Van Weel-Sipman


In 20 Dutch children with acute lymphoblastic leukemia (ALL), Cu and Zn levels in cerebrospinal fluid (CSF) were studied during standard treatment (Protocol ALL-BFM-86/SNWLK-ALL-VII). CSF-Cu in 10 controls was 0.04±0.02 μmol/L, lower compared to values in adults. At the moment of diagnosis, CSF-Cu values were higher, 0.06±0.03 μmol/L, and during maintenance therapy lower, 0.01±0.01 μmol/L. Children with central nervous system (CNS) involvement ALL as judged by CAT Scan and EEG—in addition to cytology—showed lower CSF-Cu values compared to children without.

CSF-Zn values were also measured. CSF-Zn was 0.05 μmol/L and did not vary. Cu/Zn molar ratios were increased at the onset of treatment, and decreased during maintenance therapy.

The changes in CSF-Cu may follow the natural course of the disease or may relate to the success of treatment, reflecting a decrease of leukemia activity. Another explanation concerns a risk to CNS damage by low CSF-Cu causing neuron dysfunction. Conditions necessary for the interpretation of these results into a clinical strategy for followup study are outlined.

Index Entries

Children acute lymphoblastic leukemia induction/maintenance therapy central nervous system involvement cerebrospinal fluid copper and zinc values copper/zinc molar ratios problems in clinical interpretation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. M. Goldberg, and D. Brown,Clin. Chim. Acta 169, 1–76 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    Y. Beguin, F. Brasseur, G. Weber, J. Bury, J.-M. Delbrouck, I. Roelandts, G. Robaye, and G. Fillet,Cancer 60, 1842–1846 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    C.F. Tessmer, M. Hrgovcic, B.W. Brown, J. Wilbur, and F.B. Thomas,Cancer 29, 173–179 (1972).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. Beguin, J. Bury, J.-M. Delbrouck, G. Fillet, G. Robaye, I. Roelandts, and G. Weber,Hematol-Bluttransfus.30, 380–384 (1987).Google Scholar
  5. 5.
    C.G. Wen, G.Y. Pang, and S.Q. Huang,Chung Hua Nei Ko Tsa Chih 28, 734–769 (1989).PubMedGoogle Scholar
  6. 6.
    M. Oblender and U. Carpentieri,Anticancer Res. 11, 1561–1564 (1991).PubMedGoogle Scholar
  7. 7.
    M. Oblender and U. Carpentieri,J. Cancer Res. Clin. Oncol. 117, 444–448 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    Anonymous,Nutr. Rev. 43, 117–119 (1985).Google Scholar
  9. 9.
    Anonymous,Nutr. Rev. 45, 176–180 (1987).Google Scholar
  10. 10.
    R.P. Agarwal and R.I. Henkin,Biol. Trace Element Res. 4, 117–124 (1982).Google Scholar
  11. 11.
    W.J. Bettger, J.E. Savage, and B.L. O'Dell,Nutr. Rep. Int. 19, 893–900 (1979).Google Scholar
  12. 12.
    B.L. O'Dell, inPresent Knowledge in Nutrition, M.L. Brown, ed., ILSI, Washington, D.C., 1990, Chapter 29, pp. 261–267.Google Scholar
  13. 13.
    J.P. Van Wouwe and L. Van Zuylen,Biol. Trace Element Res. 30, 197–204 (1991).CrossRefGoogle Scholar
  14. 14.
    A.J. Hartz,Arch. Pathol. Lab. Med. 108, 65–67 (1984).PubMedGoogle Scholar
  15. 15.
    R.P. Agarwal and R.I. Henkin,Biol. Trace Elem. Res. 4, 117–124 (1982).Google Scholar
  16. 16.
    J. Thompson, N.I. Ward, and W. Gooddy, inTrace Element in Man and Animals, 7, Momčilovic, ed., IMI-Institute for Medical Research and Occupational Health, University of Zagreb, Croatia, 1991, pp. 33/7–33/8.Google Scholar
  17. 17.
    L. Bourrier-Guerin, Y. Mauras, J.L. Truelle, and P. Allain,Trace Element Med. 2, 88–91 (1985).Google Scholar
  18. 18.
    B. Weisner, C. Hartard, and C. Dieu,J Neurol. Sci. 79, 229–237 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Yokoyama, J. Koh, and D.W. Choi,Neurosci. Lett. 71, 351–355 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    G.V. Iyengar, inBiological Trace Element Research, Multidisciplinary Perspectives, K.S. Subramania, G.V. Iyengar, and K. Okamoto, eds., ACS Symposium Series 445, 1991, pp. 1–14.Google Scholar
  21. 21.
    K.E.C. de Haan, C.J. de Groot, H. Boxma, and C.J.A. van den, Hamer,Clin. Chim. Acta 170, 111–112 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    K.S. Subramania, inBiological Trace Element Research, Multidisciplinary Perspectives, K.S. Subramania, G.V. Iyengar, and K. Okamoto, eds, ACS Symposium Series445, 1991, pp. 130–157 (1991).Google Scholar
  23. 23.
    G. Fernandes, and J. Venkatraman, inMicronutrients and Immune Functions, A. Bendich and R.K. Chandra, eds.,Annals NY Acad. Sci. 587, 78–91 (1990).Google Scholar
  24. 24.
    K. Dörner, G. Loose, and G. Mau, inZink, Biochemie, Physiologie, Pathophysiologie und Klinik des Zinkstoffwechsels des Menschen, H.J. Heltmeier and J. Kruse-Jarres, eds., Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany, 1991, pp. 173–183.Google Scholar
  25. 25.
    S. Chaitchik, C. Shenberg, Y. Nir-El, and M. Mantel,Biol. Trace Element Res.15, 205–212 (1988).Google Scholar
  26. 26.
    M. Petrini, F. Vaglini, G. Carolli, A. Azzarà, F. Ambrogi, and B. GrassiHaematol. 75, 27–31 (1990).Google Scholar
  27. 27.
    C. Shenberg, M. Mantel, J. Gilat, S. Chaitchik, J. Stadler, and R. Alon, Research Laboratories Annual Report, Israel Atomic Energy Commission 1989, pp. 145–147.Google Scholar
  28. 28.
    G. Ollenschläger, W. Thomas, K. Koncol, V. Diehl, and E. Roth,Eur. J. Clin. Invest. 22, 546–553 (1992).PubMedGoogle Scholar
  29. 29.
    J.T. Dwyer,Nutr. Rev. 50, 106–110 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Jacobus P. Van Wouwe
    • 1
    • 2
  • Margreet H. Van Weel-Sipman
    • 1
  1. 1.Department of PediatricsState University at LeidenDelftthe Netherlands
  2. 2.Department of Radiochemistry, Interfaculty Reactor InstituteDelft University of TechnologyDelftthe Netherlands

Personalised recommendations