Estuaries and Coasts

, Volume 29, Issue 3, pp 465–473 | Cite as

Macroalgal distribution patterns in a shallow, soft-bottom lagoon, with emphasis on the nonnativeGracilaria vermiculophylla andCodium fragile

  • Mads Solgaard Thomsen
  • Karen J. McGlathery
  • Anna Christina Tyler


We determined the distribution of macroalgae in Hog Island Bay, a shallow coastal lagoon in Virginia, USA, seasonally at 12 sites from 1998 to 2000 and at 3 representative sites from 2000 to 2002. We analyzed macroalgal biomass, taxonomic richness, and abundance of two non-native species, the cryptic invaderGracilaria vermiculophylla and the conspicuousCodium fragile, with respect to season, location (mainland, mid lagoon, barrier island sites), and elevation (intertidal, subtidal). Taxonomic richness, total algal biomass, and nonnative biomass peaked in the summer months when temperature and light availability were highest. A few stress tolerant and ephemeral algae dominated the algal assemblage.G. vermiculophylla constituted 74% of the entire algal biomass, was the most abundant alga in all seasons, locations, and elevation levels, and was positively correlated with taxonomic richness and abundance of filamentous species.Ulva curvata, Bryopsis plumosa, andC. fragile accounted for an additional 16% of the algal biomass. There are distinct habitats in Hog Island Bay that can be classified into low diversity-low biomass regions near the mainland and barrier islands and high diversity-high biomass regions in the open mid lagoon, where abundant shells for attachment and intermediate levels of water column nutrients and turbidity likely create better growth conditions. Taxonomic richness and biomass were higher in subtidal than intertidal zones, presumably due to lower desiccation stress. This study provides an example of how a single invasive species can dominate an entire assemblage, both in terms of biomass (being most abundant in all seasons, locations, and tidal levels) and species richness (correlating positively with epiphytic filamentous taxa). By adding hard-substratum structural complexity to a relatively homogenous soft-substratum system,G. vermiculophylla increases substratum availability for attachment and entanglement of other algal species and enhances local diversity. Without widespread and abundantG. vermiculophylla, taxa likePolysiphonia, Ceramium, Bryopsis, Ectocarpus, andChampia would likely be much less common. This study also highlights the importance of using DNA analysis of voucher specimens in monitoring programs to accurately identify cryptic invaders.


Macroalgae Coastal Lagoon Marine Ecology Progress Series Oyster Reef Taxonomic Richness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bell, S. S. andL. D. Coen. 1982. Investigations on epibenthic meiofauna. II. Influence of microhabitat and macroalgae on abundance of small invertebrates onDiopatra cuprea (Bosc) (Polychaeta: Onuphidae) tube-caps in Virginia.Journal of Experimental Marine Biology and Ecology 61:175–188.CrossRefGoogle Scholar
  2. Bellorin, A. M., M. C. Oliveira, andE. C. Oliveira. 2004.Gracilaria vermiculophylla: A western Pacific species of Gracilariaceae (Rhodophyta) first recorded from the eastern Pacific.Phycological Research 52:69–79.CrossRefGoogle Scholar
  3. Borum, J. 1985. Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary.Marine Biology 87:211–218.CrossRefGoogle Scholar
  4. Boynton, W. R., J. D. Hagy, L. Murray, C. Stokes, andW. M. Kemp. 1996. A comparative analysis of eutrophication patterns in a temperate coastal lagoon.Estuaries 19:408–421.CrossRefGoogle Scholar
  5. Bruno, J. F. andM. D. Bertness. 2001. Habitat modification and facilitation in benthic marine communities, p. 201–218.In M. D. Bertness, S. D. Gaines, and M. E. Hay (eds.), Marine Community Ecology. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
  6. Bruno, J. F., J. J. Stachowicz, andM. D. Bertness. 2003. Inclusion of facilitation into ecological theory.Trends in Ecology and Evolution 18:119–125.CrossRefGoogle Scholar
  7. Cancino, J. S. B. 1981. The ecological importance of kelp-like holdfast as a habitat of invertebrates in central Chile, p. 241–246.In T. Levring (ed.), 10th International Seaweed Symposium. Water de Gruyter and Co, New York.Google Scholar
  8. Carlton, J. T. andJ. A. Scanlon. 1985. Progression and dispersal of an introduced alga:Codium fragile ssp.tometosoides (Chlorophyta) on the Atlantic coast of North America.Botanical Marina 28:155–165.Google Scholar
  9. Castel, J., P. Caumette, andR. Herbert. 1996. Eutrophication gradients in coastal lagoons as exemplified by the bassin d'Arcachon and the Etang du Prevost.Hydrobiologia 329:9–28.CrossRefGoogle Scholar
  10. Castilla, J. C., N. A. Lagos, andM. Cerda. 2004. Marine ecosystem engineering by the alien ascidianPyura praeputialis on a mid-intertidal rocky shore.Marine Ecology Progress Series 268: 119–130.CrossRefGoogle Scholar
  11. Cecere, E., O. D. Saracino, M. Fanelli, andA. Petrocelli. 1992. Presence of a drifting algal bed in the Mar Piccolo basin, Taranto (Ionian Sea, Southern Italy).Journal of Applied Phycology 4:323–327.CrossRefGoogle Scholar
  12. Connor, J. L. 1980. Distribution and seasonality of macroalgae on oyster communities of central Chesapeake Bay.Botanica Marina 23:711–717.Google Scholar
  13. Cowper, S. W. 1978. The drift algae community of seagrass beds in Redfish Bay, Texas.Contributions in Marine Science 21:125–132.Google Scholar
  14. Cromwell, J. E. 1971. Barrier Coast Distribution: A Worldwide Survey. Abstracts, Second Coastal and Shallow Water Research Conference, U.S. Office of Naval Research Geography Program, University Press, University of Southern California, Los Angeles, California.Google Scholar
  15. Doty, M. S. 1946. Critical tide factors that are correlated with the vertical distribution of marine algae and other organisms along the Pacific coast.Ecology 27:315–328.CrossRefGoogle Scholar
  16. Dromgoole, F. I. 1980. Desiccation resistance of intertidal and subtidal algae.Botanica Marina 23:149–159.Google Scholar
  17. Fletcher, R. L. 1996. The occurrence of “green tides” a review.Ecological Studies 123:7–43.Google Scholar
  18. Flindt, M. R. andL. Kamp-Nielsen. 1997. Modelling of an estuarine eutrophication gradient.Ecological Modelling 102:143–153.CrossRefGoogle Scholar
  19. Flindt, M., J. Salomonsen, M. Carrer, M. Bocci, andL. Kamp-Nielsen. 1997. Loss, growth and transport dynamics ofChaetomorpha aerea andUlva rigida in the Lagoon of Venice during an early summer field campaign.Ecological Modelling 102: 133–141.CrossRefGoogle Scholar
  20. Fralick, R. A. andA. C. Mathieson. 1972. Winter fragmentation ofCodium fragile (Suringar) Hariot ssp.tomentosoides (van Goor) Silva (Chlorophyceae, Siphonales) in New England.Phycologia 11:67–70.Google Scholar
  21. Fralick, R. A. andA. C. Mathieson. 1973. Ecological studies ofCodium fragile in New England, USA.Marine Biology 19:127–132.CrossRefGoogle Scholar
  22. Goshorn, D., M. McGinty, C. Kennedy, C. Jordan, C. Wazniak, K. Schwenke, andK. Coyne. 2001. An examination of benthic macroalgae communities as indicators of nutrients in middle Atlantic coastal estuaries-Maryland component. Final report 1998–1999. Maryland Department of Natural Resources, Resource Assessment Service, Tidewater Ecosystem Assessment Division, Annapolis, Maryland.Google Scholar
  23. Gurgel, C. F. D. andS. Fredericq. 2004. Phylogeography ofGracilaria tikvahiae (Gracilariacea, Rhodophyta): A study of genetic discontinuity in a continuously distributed species based on molecular evidence.Journal of Phycology 40:748–758.CrossRefGoogle Scholar
  24. Hanisak, M. D. 1979a. Growth patterns ofCodium fragile ssp.tometosoides in response to temperature, irradiance, salinity and nitrogen source.Marine Biology 50:319–332.CrossRefGoogle Scholar
  25. Hanisak, M. D. 1979b. Nitrogen limitation ofCodium fragile ssp.tometosoides as determined by tissue analysis.Marine Biology 50: 333–337.CrossRefGoogle Scholar
  26. Hauxwell, J., J. Cebrian, C. Furlong, andI. Valiela. 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems.Ecology 82:1007–1022.Google Scholar
  27. Hillson, C. J. 1976.Codium invades Virginia waters.Bulletin of the Torrey Botanical Club 103:266–267.CrossRefGoogle Scholar
  28. Holmquist, J. G. 1994. Benthic macroalgae as a dispersal mechanism for fauna: Influence of a marine tumbleweed.Journal of Experimental Marine Biology and Ecology 180:235–251.CrossRefGoogle Scholar
  29. Humm, H. J. 1979. The Marine Algae of Virginia, Special Papers in Marine Science, Number 3, The University Press of Virginia, Charlottesville, Virginia.Google Scholar
  30. Lawson, S. 2003. Sediment suspension as a control of light availability in a coastal lagoon. M.S. Thesis, Department Environmental Science, University of Virginia, Charlottesville, Virginia.Google Scholar
  31. Lee, V. andS. Olsen. 1985. Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island coastal lagoons.Estuaries 8:191–202.CrossRefGoogle Scholar
  32. Lenihan, H. S. 1999. Physical-biological coupling on oyster reefs: How habitat structure influences individual performance.Ecological Monographs 69:251–275.Google Scholar
  33. Lowthion, D., P. G. Soulsby, andM. C. M. Houston. 1985. Investigation of a eutrophic tidal basin: Part I-Factors affecting the distribution and biomass of macroalgae.Marine Environmental Research 15:263–284.CrossRefGoogle Scholar
  34. Malinowski, K. C. andJ. Ramus. 1973. Growth of the green algaCodium fragile in a Connecticut estuary.Journal of Phycology 9: 102–110.Google Scholar
  35. Mangum, C. P., S. L. Santos, andW. R. Rhodes. 1968. Distribution and feeding in the onuphid polychaete,Diopatra cuprea (BOSC).Marine Biology 2:33–40.CrossRefGoogle Scholar
  36. McGlathery, K. J. 1992. Physiological controls on the distribution of the macroalgaeSpyridea hypnoides: Patterns along a eutrophication gradient in Bermuda.Marine Ecology Progress Series 87: 173–182.CrossRefGoogle Scholar
  37. McGlathery, K. J. 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters.Journal of Phycology 37:1–4.CrossRefGoogle Scholar
  38. McGlathery, K. J., I. C. Anderson, andA. C. Tyler. 2001. Magnitude and variability of benthic and pelagic metabolism in a temperate coastal lagoon.Marine Ecology Progress Series 216:1–15.CrossRefGoogle Scholar
  39. Morand, P. andX. Briand. 1996. Excessive growth of macroalgae—A symptom of environmental disturbance.Botanica Marina 39:491–516.CrossRefGoogle Scholar
  40. Norkko, A. 1998. The impact of loose-lying algal mats and predation by the brown shrimpCrangon crangon (L.) on infaunal prey dispersal and survival.Journal of Experimental Marine Biology and Ecology 221:99–116.CrossRefGoogle Scholar
  41. Norkko, A. andE. Bonsdorff. 1996. Population responses of coastal zoobenthos to stress induced by drifting algal mats.Marine Ecology Progress Series 140:141–151.CrossRefGoogle Scholar
  42. Norkko, J., E. Bonsdorff, andA. Norkko. 2000. Drifting algal mats as an alternative habitat for benthic invertebrates: Species specific responses to a transient resource.Journal of Experimental Marine Biology and Ecology 248:79–104.CrossRefGoogle Scholar
  43. Norton, T. A. andA. C. Mathieson. 1983. The biology of unattached seaweeds.Progress in Phycological Research 2:333–386.Google Scholar
  44. Oertel, G. F. 2001. Hypsographic, hydro-hypsographic and hydrological analysis of coastal bay environments, Great Machipongo Bay, Virginia.Journal of Coastal Research 17:775–783.Google Scholar
  45. Orth, R. J. andJ. V. Montfrans. 1984. Epiphyte-seagrass relationships with an emphasis on the role of micrograzing: A review.Aquatic Botany 18:43–69.CrossRefGoogle Scholar
  46. Pallant, J. 2001. SPSS Survival Guide: A step by step guide to data analysis using SPSS. Allen and Unwin, Crows Nest NSW, Australia.Google Scholar
  47. Pedersen, M. F. 1995. Nitrogen limitation of photosynthesis and growth: Comparison across aquatic plant communities in a Danish estuary (Roskilde Fjord).Ophelia 41:261–272.Google Scholar
  48. Pedersen, M. F., P. A. Stæhr, T. Wernberg, andM. S. Thomsen. 2005. Biomass dynamics of exoticSargassum muticum and nativeHalidrys siliquosa in Limfjorden, Denmark-Implications of species replacements on turnover rates.Aquatic Botany 83:31–47.CrossRefGoogle Scholar
  49. Raffaelli, D. G., J. A. Raven, andL. J. Poole. 1998. Ecological impact of green macroalgal blooms.Oceanography and Marine Biology: An Annual Review 36:97–125.Google Scholar
  50. Reise, K. 1983. Sewage, green algal mats anchored by lugworms, and the effects on Turbellaria and small polychaetes.Helgoländer Meeresuntersuchungen 36:151–162.CrossRefGoogle Scholar
  51. Rhodes, R. G. 1970. Seasonal occurrence of marine algae on an oyster reef in Burton's Bay, Virginia.Chesapeake Science 11:61–71.CrossRefGoogle Scholar
  52. Rosinski, J. L. 2004. Controls on benthic biodiversity and trophic interactions in a temperate coastal lagoon. Ph.D. Dissertation, Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia.Google Scholar
  53. Rueness, J. 2005. Life history and molecular sequences ofGracilaria vermiculophylla (Gracilariales, Rhodophyta), a new introduction to European waters.Phycologia 44:120–128.CrossRefGoogle Scholar
  54. Ruiz, G. M., J. T. Carlton, E. D. Grosholz, andA. H. Hines. 1997. Global invasions of marine and estuarine habitats by non-indigenous species; Mechanisms, extent, and consequences.American Zoology 37:621–632.Google Scholar
  55. Ruiz, G., M. P. Fofonoff, A. H. Hines, andE. D. Grozholz. 1999. Non-indigenous species as stressors in estuarine and marine communities: Assessing invasion impacts and interactions.Limnology and Oceanography 44:950–972.CrossRefGoogle Scholar
  56. Sand-Jensen, K. andJ. Borum. 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries.Aquatic Botany 41:137–175.CrossRefGoogle Scholar
  57. Schneider, C. W. andR. B. Searles. 1991. Seaweeds of the southeastern United States—Cape Hatteras to Cape Canaveral. Duke University Press, Durham, North Carolina.Google Scholar
  58. Schwindt, E., A. Bortolus, andO. O. Iribarne. 2001. Invasion of a reef-builder polychaete: Direct and indirect impacts on the native benthic community structure.Biological Invasions 3:137–149.CrossRefGoogle Scholar
  59. Sears, J. R. 1975. Sublittoral, benthic marine algae of southern Cape Cod and adjacent islands: Seasonal periodicity, associations, diversity, and floristic composition.Ecological Monographs 45:337–365.CrossRefGoogle Scholar
  60. Simberloff, D. andB. Von Holle. 1999. Positive interactions of nonindigenous species: Invasional meltdown?Biological Invasions 1:21–32.CrossRefGoogle Scholar
  61. Stanhope, J. W. 2003. Relationships between watershed characteristics and baseflow nutrient discharges to eastern shore coastal lagoons, Virginia. M.S. Thesis, Virginia Institute of Marine Science, College of William and Mary, Williamsburg, Virginia.Google Scholar
  62. Tagliapietra, D., M. Pavan, andC. Wagner. 1998. Macrobenthic community changes related to eutrophication in Palude della Rosa (Venetian Lagoon, Italy).Estuarine Coastal and Shelf Science 47:217–226.CrossRefGoogle Scholar
  63. Taylor, D., S. Nixon, S. Granger, andB. Buckley. 1995. Nitrogen limitation and the eutrophication of coastal laggons.Marine Ecology Progress Series 127:235–244.CrossRefGoogle Scholar
  64. Thomsen, M. S. 2004a. Macroalgal distribution patterns and ecological performances in a tidal coastal lagoon, with emphasis on the non-indigenousCodium fragile ssp.tomentosoides. Ph.D. Dissertation, Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia.Google Scholar
  65. Thomsen, M. S. 2004b. Species, thallus size and substrate determine macroalgal break forces and break places in a lowenergy soft-bottom lagoon.Aquatic Botany 80:153–161.CrossRefGoogle Scholar
  66. Thomsen, M. S., C. F. D. Gurgel, S. Fredericq, andK. J. McGlathery. 2005.Gracilaria vermiculophylla (Rhodophyta, Gracilariales) in Hog Island Bay, Virginia: A cryptic alien and invasive macroalgae and taxonomic corrections.Journal of Phycology 42:139–141.CrossRefGoogle Scholar
  67. Thomsen, M. S. andK. J. McGlathery. 2005. Pacilitation of macroalgae by the sedimentary tube forming polychaeteDiopatra cuprea.Estuarine Coastal and Shelf Science 62:63–73.CrossRefGoogle Scholar
  68. Thomsen, M. S., T. Wernberg, P. A. Staehr, andM. F. Pedersen. 2006. Spatio-temporal distribution patterns of the invasive macroalgaSargassum muticum within a Danish Sargassum-bed.Helgolander Marine Research 60:50–58.CrossRefGoogle Scholar
  69. Thomsen, M. S. andK. J. McGlathery. 2006. Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs.Journal of Experimental Marine Biology and Ecology 328:22–34.CrossRefGoogle Scholar
  70. Thorne-Miller, B., M. M. Harlin, M. M. Brady-Campbell, andB. A. Dworetzky. 1983. Variations in the distribution and biomass of submerged macrophytes in five coastal laggons in Rhode Island, U.S.A.Botanica Marina 26:231–242.Google Scholar
  71. Trowbridge, C. D. 1998. Ecology of the green macroalgaCodium fragile (Suringar) Hariot 1889: Invasive and non-invasive subspecies.Oceanography and Marine Biology: An Annual Review 36:1–64.Google Scholar
  72. Tyler, A. C., K. J. McGlathery, andI. C. Anderson. 2001. Macroalgal mediation of dissolved organic nitrogen fluxes in a temperate coastal lagoon.Estuarine Coastal and Shelf Science 53: 155–168.CrossRefGoogle Scholar
  73. Tyler, A. C., K. J. McGlathery, andI. C. Anderson. 2003. Benthic algae control sediment-water column fluxes of organic and inorganic nitrogen compounds in a temperate lagoon.Limnology and Oceanography 48:2125–2137.Google Scholar
  74. Underwood, A. J. 1981. Techniques of analysis of variance in experimental marine biology and ecology.Oceanography and Marine Biology: An Annual Review 19:513–605.Google Scholar
  75. Virnstein, R. W. andP. A. Carbonara. 1985. Seasonal abundance and distribution of drift algae and seagrasses in the mid-Indian River Lagoon, Florida.Aquatic Botany 23:67–82.CrossRefGoogle Scholar
  76. Wernberg, T., M. S. Thomsen, P. A. Staerh, andM. F. Pedersen. 2004. Epibiota communities of the introduced and indigenous macroalgal relativesSargassum muticum andHalidrys siliquosa in Limfjorden (Denmark).Helgolander Marine Research 58:154–161.CrossRefGoogle Scholar
  77. Wolfe, J. M. andM. M. Harlin. 1988. Tide pools in southern Rhode Island, USA. I. Distribution and seasonality of macroalgae.Botanica Marina 31:525–536.CrossRefGoogle Scholar
  78. Woodin, S. A. 1978. Refuges, disturbance, and community structure: A marine soft-bottom example.Ecology 59:274–284.CrossRefGoogle Scholar
  79. Wulff, B. L. andK. L. Webb. 1969. Intertidal zonation of marine algae at Gloucester Point, Virginia.Chesapeake Science 10:29–35.CrossRefGoogle Scholar
  80. Yamamoto, H. andJ. Sasaki. 1988. Interfertility between socalledGracilaria verrucosa (Huds.) Papenfuss andG. vermiculophylla (Ohmi) Papenfuss in Japan.Bulletin of the Faculty of Fisheries Hokkaido University 39:1–3.Google Scholar
  81. Yokoya, N. S., H. Kakita, H. Obika, andT. Kitamura. 1999. Effects of environmental factors and plant growth regulators on growth of the red algaGracilaria vermiculophylla from Shikoku Island, Japan.Hydrobiologia 398/399:339–347.CrossRefGoogle Scholar
  82. Zuhlke, R. 2001. Polychaete tubes create ephemeral community patterns:Lanice conchilega (Pallas, 1766) associations studied over six years.Journal of Sea Research 46:261–272.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2006

Authors and Affiliations

  • Mads Solgaard Thomsen
    • 1
  • Karen J. McGlathery
    • 1
  • Anna Christina Tyler
    • 1
  1. 1.Department of Environmental SciencesUniversity of VirginiaCharlottesville

Personalised recommendations