Skip to main content
Log in

Effect of zinc on aminopeptidase N activity and L-threonine transport in rabbit jejunum

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc is a nutritionally essential trace element required for many biological functions to be succesfully carried out. The aim of the present work was to study the influence of zinc on the intestinal absorption of L-threonine and on the aminopeptidase N activity in rabbit jejunum, after in vitro addition and/or oral administration of ZnCl2 in drinking water. Results obtained show that zinc decreases L-threonine absorption in the jejunal tissue. This effect would appear to be owing to an action mainly located in active amino acid transport, because zinc does not seem to modify the amino acid diffusion across the intestinal epithelium, of the mucosal border of the intestinal epithelium. Zinc has also been shown to inhibit the (Na+−K+)-ATPase activity of the enterocyte, which might explain the inhibition of the L-threonine Na+-dependent transport. Nevertheless, a direct action of the zinc on carriers of active transport cannot be rejected. However, zinc did not significantly modify the aminopeptidase N activity in rabbit jejunum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Burch, H. K. Hahn, and J. F. Sullivan, Newer aspects of the roles of zinc, manganese, and copper in human nutrition,Clin. Chem. 21, 501–520 (1975).

    PubMed  CAS  Google Scholar 

  2. E. J. Underwood,Trace Elements in Human and Animal Nutrition, 4th ed., Academic, New York, pp. 196–242 (1977).

    Google Scholar 

  3. R. J. Cousins, Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin,Physiol. Rev. 65, 238–309 (1985).

    PubMed  CAS  Google Scholar 

  4. W. J. Bettger and B. L. O'Dell, A critical physiological role of zinc in the structure and function of biomembranes,Life Sc. 28, 1425–1438 (1981).

    Article  CAS  Google Scholar 

  5. G. C. Cotzias and P. S. Papavasilion, Specificity of zinc pathway through the body: homeostatic considerations,Am. J. Physiol. 206, 787–792 (1964).

    PubMed  CAS  Google Scholar 

  6. J. E. Hoadley and R. J. Cousins, Regulatory mechanism for intestinal transport of zinc and copper, InEssential and Toxic Trace Elements in Human Health and Disease, Liss, New York vol.18, pp. 141–155 (1988).

    Google Scholar 

  7. L. H. Horchang, A. S. Prasad, G. J. Brewer, and C. Owyang, Zinc absorption in human small intestine,Am. J. Physiol. 256, G87-G91 (1989).

    Google Scholar 

  8. M. P. Menard and R. J. Cousins, Zinc transport by brush-border membrane vesicles from rat intestine,J. Nutr. 113, 1434–1442 (1983).

    PubMed  CAS  Google Scholar 

  9. F. Lebas, Nutrition of rabbits, InFeeding of Non-Ruminant Livestock. J. Wiseman, ed., University of Nottingham School of Agriculture, Nottingham, UK, pp. 63–69 (1987).

    Google Scholar 

  10. P. J. Moughan, W. H. Schultze, and W. C. Smith, Amino acid requirements of the growing meat rabbit. 1. The amino acid composition of rabbit whole-body tissue—a theoretical estimate of ideal amino acid balance,Anim. Prod. 47, 297–301 (1988).

    Article  CAS  Google Scholar 

  11. W. H. Schultze, W. C. Smith, and P. J. Moughan, Amino acid requirements of the growing meat rabbit. 2. Comparative growth performance on practical diets of equal lysine concentration but decreasing levels of other amino acids,Anim. Prod. 47, 303–310 (1988).

    Article  CAS  Google Scholar 

  12. W. Tsuchiya and Y. Okada, Differential effects of cadmium and mercury on aminoacid and sugar transport in the bull-frog small intestine,Experientia 38, 1073 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. K. V. Sastry and K. M. Subhadra, Cadmium induced alterations in the intestinal absorption of glucose and fructose in a fresh-water cat fish,heteropneutes fossilis, Water Air Soil Pollut. 20, 293–297 (1983).

    Article  CAS  Google Scholar 

  14. D. S. Miller, HgCl2 inhibition of nutrient transport in teleost fish small intestine,J. Pharmacol. Exp. Ther. 216, 70–76 (1981).

    PubMed  CAS  Google Scholar 

  15. D. S. Miller, A. T. Shehata, and J. Lerner, HgCl2 inhibition of D-glucose transport in jejunal tissue from 2 day and 21 day chicks,J. Pharmacol. Exp. Ther. 214, 101–105 (1980).

    PubMed  CAS  Google Scholar 

  16. V. Lyall, R. Nath, and A. Mahmood, Inhibition of D-galactose uptake by zinc in rat intestine,Biochem. Med. 22, 192–197 (1979).

    Article  PubMed  CAS  Google Scholar 

  17. D. W. Watkins, C. Chenu and P. Ripoche, Zinc inhibition of glucose uptake in brush-border membrane vesicles from pig small intestine,Pflügers. Arch. 415, 165–171 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. C. E. Bevan and E. C. Foulkes, Interaction of cadmium with brush border membrane vesicles from the rat small intestine,Toxicology 54, 297–309 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. A. Klip, S. Grinstein, J. Biber, and G. Semenza, Interaction of the sugar carrier on intestinal brush-border membranes with HgCl2,Biochim. Biophys. Acta 598, 100–114 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. S. Kojima, M. Kiyozumi, T. Honda, T. Shimizu, Y. Moriyama, and E. Sueyoshi, Studies of poisonous metals. XIII Effect of cadmium on small intestinal absorption of L-histidine in rats,Chem. Pharm. Bull. 34, 372–377 (1986).

    PubMed  CAS  Google Scholar 

  21. M. J. Rodríguez-Yoldi, A. Lugea, A. Barber, M. Lluch, and F. Ponz, Inhibition of sugar and amino acid transport across rat jejunum by cadmium, copper and mercury,Rev. esp. Fisiol. 45 (suppl.), 207–214 (1989).

    PubMed  Google Scholar 

  22. M. C. Rodríguez-Yoldi, J. E. Mesonero, and M. J. Rodríguez-Yoldi, Inhibition of D-galactose transport across the small intestine of rabbit by zinc,J. Vet. Med. serieA, 39, 687–695 (1992).

    Article  Google Scholar 

  23. J. E. Mesonero, M. C. Rodríguez-Yoldi, and M. J. Rodríguez-Yoldi, Effect of cadmium on enzymatic digestion and sugar transport in the small intestine of rabbit,Biol. Trace Elem Res. 38, 217–225 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. J. E. Mesonero, M. C. Rodríguez-Yoldi, and M. J. Rodríguez-Yoldi, Cadmium action on aminopeptidase N activity and L-threonine intestinal transport in rabbit,Reprod. Nutr. Dev. 34, 115–123 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. J. R. Del Castillo and J. W. L. Robinson, The simultaneous preparation of basolateral and brush border membrane vesicles from guinea pig intestinal epithelium and the determination of the orientation of the basolateral vesicles,Biochim. Biophys. Acta 688, 45–56 (1982).

    Article  PubMed  Google Scholar 

  26. F. Proverbio and J. R. Del Castillo, Na+-stimulated ATPase activities in kidney basal-lateral plasma membranes,Biochim. Biophys. Acta 646, 99–108 (1981).

    Article  PubMed  CAS  Google Scholar 

  27. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  28. E. Brot-Laroche, M. A. Serrano, B. Delhomme, and F. Alvarado, Temperature sensitivity and substrate specificity of two distinct Na+-activated D-glucose transport systems in guinea-pig jejunal border membrane vesicles,J. Biol. Chem. 261, 6168–6176 (1986).

    PubMed  CAS  Google Scholar 

  29. G. Andria, S. Cucchiara, B. Vizia, G. Ritis, G. Mazzacca, and S. Auricchio, Brush border and cystosol peptidase activities of human small intestine in normal subjects and coeliac patients,Pediat. Res. 14, 812–818 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. R. G. D. Steel and J. H. Torrie,Principles and Procedure of Statistics. A biometrial approach. McGraw-Hill, New York (1980).

    Google Scholar 

  31. M. C. Rodríguez-Yoldi, J. E. Mesonero, and M. J. Rodríguez-Yoldi, Effect of zinc on L-threonine transport across the jejunum of rabbit,Biol. Trace Elem. Res. 37, 269–279 (1993).

    PubMed  Google Scholar 

  32. B. R. Stevens, J. J. Kaunitz, and E. M. Wright, Intestinal transport of amino acids and sugars: advances using membranes vesicles,Ann. Rev. Physiol. 46, 417–433 (1984).

    Article  CAS  Google Scholar 

  33. B. G. Munck, Transport of neutral and cationic amino acids across the brush-border membrane of the rabbit ileum,J. Membr. Biol. 83, 1–3 (1985).

    Article  PubMed  CAS  Google Scholar 

  34. B. R. Nechay and J. P. Saunders, Inhibitory characteristics of cadmium, lead and mercury in human sodium and potassium dependent adenosinetriphosphatase preparations,J. Environ. Pathol. Toxicol. 2, 283–290 (1978).

    PubMed  CAS  Google Scholar 

  35. A. Tokushige, H. Higashino, B. M. Searle, H. Tamura, M. Kind, J. D. Bogden, and A. Aviv, Cadmium effect on the Na+−K+ATPase system in cultured vascular smooth muscle cells,Hypertension 6, 20–26 (1984).

    PubMed  CAS  Google Scholar 

  36. H. J. Kramer, H. C. Gonick, and E. Lu, In vitro inhibition of Na−K-ATPase by trace metals: relation to renal and cardiovascular damage,Nephron 44, 329–336 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. K. L. Ahammad Sahib, K. S. Moorthy, and D. Desaiah, Effects of methyl mercury and cadmium on the kinetics of substrate activation of K+-paranitrophenyl phosphatase,J. Appl. Toxicol. 7, 221–226 (1987).

    Article  CAS  Google Scholar 

  38. K. B. Jacobson and J. E. Turner, The interaction of cadmium and certain other metal ions with proteins and nucleic acids,Toxicology 16, 1–37 (1980).

    Article  PubMed  CAS  Google Scholar 

  39. R. K. Tuker and A. Matte, In vitro effects of cadmium and lead on ATPase in the gill of the rock crab,cancer irroratus, Bull. Environ. Contam. Toxicol. 24, 847–852 (1980).

    Article  Google Scholar 

  40. J. R. Del Castillo and G. Whittembury, Na+, K+ and Cl transport in isolated small intestinal cells from guinea pig. Evidence for the existence of a second Na+ pump,Biochem. Biophys. Acta 910, 209–216 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoldi, MC.R., Mesonero, JE. & Yoldi, MJ.R. Effect of zinc on aminopeptidase N activity and L-threonine transport in rabbit jejunum. Biol Trace Elem Res 53, 213–223 (1996). https://doi.org/10.1007/BF02784557

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784557

Index Entries

Navigation