Biological Trace Element Research

, Volume 53, Issue 1–3, pp 213–223 | Cite as

Effect of zinc on aminopeptidase N activity and L-threonine transport in rabbit jejunum

  • María-Carmen Rodriguez Yoldi
  • José-Emilio Mesonero
  • María-Jesús Rodriguez Yoldi
Original Articles


Zinc is a nutritionally essential trace element required for many biological functions to be succesfully carried out. The aim of the present work was to study the influence of zinc on the intestinal absorption of L-threonine and on the aminopeptidase N activity in rabbit jejunum, after in vitro addition and/or oral administration of ZnCl2 in drinking water. Results obtained show that zinc decreases L-threonine absorption in the jejunal tissue. This effect would appear to be owing to an action mainly located in active amino acid transport, because zinc does not seem to modify the amino acid diffusion across the intestinal epithelium, of the mucosal border of the intestinal epithelium. Zinc has also been shown to inhibit the (Na+−K+)-ATPase activity of the enterocyte, which might explain the inhibition of the L-threonine Na+-dependent transport. Nevertheless, a direct action of the zinc on carriers of active transport cannot be rejected. However, zinc did not significantly modify the aminopeptidase N activity in rabbit jejunum.

Index Entries

Zinc intestinal transport L-threonine aminopeptidase N (Na+−K+)-ATPase Na+-ATPase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Burch, H. K. Hahn, and J. F. Sullivan, Newer aspects of the roles of zinc, manganese, and copper in human nutrition,Clin. Chem. 21, 501–520 (1975).PubMedGoogle Scholar
  2. 2.
    E. J. Underwood,Trace Elements in Human and Animal Nutrition, 4th ed., Academic, New York, pp. 196–242 (1977).Google Scholar
  3. 3.
    R. J. Cousins, Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin,Physiol. Rev. 65, 238–309 (1985).PubMedGoogle Scholar
  4. 4.
    W. J. Bettger and B. L. O'Dell, A critical physiological role of zinc in the structure and function of biomembranes,Life Sc. 28, 1425–1438 (1981).CrossRefGoogle Scholar
  5. 5.
    G. C. Cotzias and P. S. Papavasilion, Specificity of zinc pathway through the body: homeostatic considerations,Am. J. Physiol. 206, 787–792 (1964).PubMedGoogle Scholar
  6. 6.
    J. E. Hoadley and R. J. Cousins, Regulatory mechanism for intestinal transport of zinc and copper, InEssential and Toxic Trace Elements in Human Health and Disease, Liss, New York vol.18, pp. 141–155 (1988).Google Scholar
  7. 7.
    L. H. Horchang, A. S. Prasad, G. J. Brewer, and C. Owyang, Zinc absorption in human small intestine,Am. J. Physiol. 256, G87-G91 (1989).Google Scholar
  8. 8.
    M. P. Menard and R. J. Cousins, Zinc transport by brush-border membrane vesicles from rat intestine,J. Nutr. 113, 1434–1442 (1983).PubMedGoogle Scholar
  9. 9.
    F. Lebas, Nutrition of rabbits, InFeeding of Non-Ruminant Livestock. J. Wiseman, ed., University of Nottingham School of Agriculture, Nottingham, UK, pp. 63–69 (1987).Google Scholar
  10. 10.
    P. J. Moughan, W. H. Schultze, and W. C. Smith, Amino acid requirements of the growing meat rabbit. 1. The amino acid composition of rabbit whole-body tissue—a theoretical estimate of ideal amino acid balance,Anim. Prod. 47, 297–301 (1988).CrossRefGoogle Scholar
  11. 11.
    W. H. Schultze, W. C. Smith, and P. J. Moughan, Amino acid requirements of the growing meat rabbit. 2. Comparative growth performance on practical diets of equal lysine concentration but decreasing levels of other amino acids,Anim. Prod. 47, 303–310 (1988).CrossRefGoogle Scholar
  12. 12.
    W. Tsuchiya and Y. Okada, Differential effects of cadmium and mercury on aminoacid and sugar transport in the bull-frog small intestine,Experientia 38, 1073 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    K. V. Sastry and K. M. Subhadra, Cadmium induced alterations in the intestinal absorption of glucose and fructose in a fresh-water cat fish,heteropneutes fossilis, Water Air Soil Pollut. 20, 293–297 (1983).CrossRefGoogle Scholar
  14. 14.
    D. S. Miller, HgCl2 inhibition of nutrient transport in teleost fish small intestine,J. Pharmacol. Exp. Ther. 216, 70–76 (1981).PubMedGoogle Scholar
  15. 15.
    D. S. Miller, A. T. Shehata, and J. Lerner, HgCl2 inhibition of D-glucose transport in jejunal tissue from 2 day and 21 day chicks,J. Pharmacol. Exp. Ther. 214, 101–105 (1980).PubMedGoogle Scholar
  16. 16.
    V. Lyall, R. Nath, and A. Mahmood, Inhibition of D-galactose uptake by zinc in rat intestine,Biochem. Med. 22, 192–197 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    D. W. Watkins, C. Chenu and P. Ripoche, Zinc inhibition of glucose uptake in brush-border membrane vesicles from pig small intestine,Pflügers. Arch. 415, 165–171 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    C. E. Bevan and E. C. Foulkes, Interaction of cadmium with brush border membrane vesicles from the rat small intestine,Toxicology 54, 297–309 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Klip, S. Grinstein, J. Biber, and G. Semenza, Interaction of the sugar carrier on intestinal brush-border membranes with HgCl2,Biochim. Biophys. Acta 598, 100–114 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Kojima, M. Kiyozumi, T. Honda, T. Shimizu, Y. Moriyama, and E. Sueyoshi, Studies of poisonous metals. XIII Effect of cadmium on small intestinal absorption of L-histidine in rats,Chem. Pharm. Bull. 34, 372–377 (1986).PubMedGoogle Scholar
  21. 21.
    M. J. Rodríguez-Yoldi, A. Lugea, A. Barber, M. Lluch, and F. Ponz, Inhibition of sugar and amino acid transport across rat jejunum by cadmium, copper and mercury,Rev. esp. Fisiol. 45 (suppl.), 207–214 (1989).PubMedGoogle Scholar
  22. 22.
    M. C. Rodríguez-Yoldi, J. E. Mesonero, and M. J. Rodríguez-Yoldi, Inhibition of D-galactose transport across the small intestine of rabbit by zinc,J. Vet. Med. serieA, 39, 687–695 (1992).CrossRefGoogle Scholar
  23. 23.
    J. E. Mesonero, M. C. Rodríguez-Yoldi, and M. J. Rodríguez-Yoldi, Effect of cadmium on enzymatic digestion and sugar transport in the small intestine of rabbit,Biol. Trace Elem Res. 38, 217–225 (1993).PubMedCrossRefGoogle Scholar
  24. 24.
    J. E. Mesonero, M. C. Rodríguez-Yoldi, and M. J. Rodríguez-Yoldi, Cadmium action on aminopeptidase N activity and L-threonine intestinal transport in rabbit,Reprod. Nutr. Dev. 34, 115–123 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    J. R. Del Castillo and J. W. L. Robinson, The simultaneous preparation of basolateral and brush border membrane vesicles from guinea pig intestinal epithelium and the determination of the orientation of the basolateral vesicles,Biochim. Biophys. Acta 688, 45–56 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    F. Proverbio and J. R. Del Castillo, Na+-stimulated ATPase activities in kidney basal-lateral plasma membranes,Biochim. Biophys. Acta 646, 99–108 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,Anal. Biochem. 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  28. 28.
    E. Brot-Laroche, M. A. Serrano, B. Delhomme, and F. Alvarado, Temperature sensitivity and substrate specificity of two distinct Na+-activated D-glucose transport systems in guinea-pig jejunal border membrane vesicles,J. Biol. Chem. 261, 6168–6176 (1986).PubMedGoogle Scholar
  29. 29.
    G. Andria, S. Cucchiara, B. Vizia, G. Ritis, G. Mazzacca, and S. Auricchio, Brush border and cystosol peptidase activities of human small intestine in normal subjects and coeliac patients,Pediat. Res. 14, 812–818 (1980).PubMedCrossRefGoogle Scholar
  30. 30.
    R. G. D. Steel and J. H. Torrie,Principles and Procedure of Statistics. A biometrial approach. McGraw-Hill, New York (1980).Google Scholar
  31. 31.
    M. C. Rodríguez-Yoldi, J. E. Mesonero, and M. J. Rodríguez-Yoldi, Effect of zinc on L-threonine transport across the jejunum of rabbit,Biol. Trace Elem. Res. 37, 269–279 (1993).PubMedGoogle Scholar
  32. 32.
    B. R. Stevens, J. J. Kaunitz, and E. M. Wright, Intestinal transport of amino acids and sugars: advances using membranes vesicles,Ann. Rev. Physiol. 46, 417–433 (1984).CrossRefGoogle Scholar
  33. 33.
    B. G. Munck, Transport of neutral and cationic amino acids across the brush-border membrane of the rabbit ileum,J. Membr. Biol. 83, 1–3 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    B. R. Nechay and J. P. Saunders, Inhibitory characteristics of cadmium, lead and mercury in human sodium and potassium dependent adenosinetriphosphatase preparations,J. Environ. Pathol. Toxicol. 2, 283–290 (1978).PubMedGoogle Scholar
  35. 35.
    A. Tokushige, H. Higashino, B. M. Searle, H. Tamura, M. Kind, J. D. Bogden, and A. Aviv, Cadmium effect on the Na+−K+ATPase system in cultured vascular smooth muscle cells,Hypertension 6, 20–26 (1984).PubMedGoogle Scholar
  36. 36.
    H. J. Kramer, H. C. Gonick, and E. Lu, In vitro inhibition of Na−K-ATPase by trace metals: relation to renal and cardiovascular damage,Nephron 44, 329–336 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    K. L. Ahammad Sahib, K. S. Moorthy, and D. Desaiah, Effects of methyl mercury and cadmium on the kinetics of substrate activation of K+-paranitrophenyl phosphatase,J. Appl. Toxicol. 7, 221–226 (1987).CrossRefGoogle Scholar
  38. 38.
    K. B. Jacobson and J. E. Turner, The interaction of cadmium and certain other metal ions with proteins and nucleic acids,Toxicology 16, 1–37 (1980).PubMedCrossRefGoogle Scholar
  39. 39.
    R. K. Tuker and A. Matte, In vitro effects of cadmium and lead on ATPase in the gill of the rock crab,cancer irroratus, Bull. Environ. Contam. Toxicol. 24, 847–852 (1980).CrossRefGoogle Scholar
  40. 40.
    J. R. Del Castillo and G. Whittembury, Na+, K+ and Cl transport in isolated small intestinal cells from guinea pig. Evidence for the existence of a second Na+ pump,Biochem. Biophys. Acta 910, 209–216 (1987).Google Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • María-Carmen Rodriguez Yoldi
    • 1
  • José-Emilio Mesonero
    • 1
  • María-Jesús Rodriguez Yoldi
    • 1
  1. 1.Fisiología, Facultad de VeterinariaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations