Advertisement

Biological Trace Element Research

, Volume 60, Issue 3, pp 205–213 | Cite as

Calcium, magnesium, and zinc status in experimental hypothyroidism

  • Gonul ŞimŞek
  • Gulnur Andican
  • Yunus Karako©
  • Gunner Yiğit
  • Husrev Hatemi
  • Gulden Candan
Original Articles

Abstract

In this study, experimental hypothyroidism was established and used to investigate possible alterations in the calcium, magnesium, and zinc homeostasis by assessing their concentration in plasma and erythrocytes. Hypothyroidism was induced by administration of methimazole an iodine blocker at a dose of 75 mg/100 g food for 3 wk.

In the methimazole-induced hypothyroid state, the experimental animals showed a significant decrease in plasma zinc concentration, whereas a significant increase in plasma magnesium concentration occurred. No change was observed in plasma calcium concentration. The erythrocyte zinc and calcium concentrations were found to be increased, whereas magnesium concentration decreased. Erythrocyte magnesium concentration showed a significant positive correlation with T4 values.

The study provides evidence for marked alterations in homeostatis of zinc, magnesium, and calcium.

Index Entries

Hypothyroidism calcium magnesium zinc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Rude, Magnesium metabolism and deficiency,Endocrinology Metab. Clin. North Am. 22, 377–395 (1993).Google Scholar
  2. 2.
    A. Prasad, Clinical manifestations of zinc deficiency,Ann Rev. Nutr. 5, 341–363, (1985).CrossRefGoogle Scholar
  3. 3.
    K. D. Burman, J. M. Monchik, J. M. Earll, and L. Wartofsky, Ionized and total serum calcium and parathyroid hormone in hyperthyroidism,Ann Intern. Med. 84, 668–671 (1976).PubMedGoogle Scholar
  4. 4.
    E. Dolev, P. A. Deuster, B. Solomon, U. H. Trostmann, L. Wartofsky, and K. D. Burman, Alterations in magnesium and zinc metabolism in thyroid disease, Metabolism37, 61–67 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    A. O. Olukoga, R T. Erasmus, and H. O. Adewaye, Erythrocyte and plasma magnesium status in Nigerians with diabetes mellitus, Ann. Clin. Biochem.26, 74–77 (1989).PubMedGoogle Scholar
  6. 6.
    G. ŞimŞek, G. Andican, E. ünal, H. Hatemi, G. Yiğit, and G. Andican, Calcium, magnesium and zinc status in experimental hyperthyroidism, Biol. Trace Element Res.57, 131–137 (1997).Google Scholar
  7. 7.
    L. Mosekilde, F. Meisen, J. P. Bagger, O. Myhre-Jensen, and N. S. Sorensen, Bone changes in hyperthyroidism:interrelationships between bone morphometry, thyroid function and calcium-phosphorous metabolism,Acta Endocrinol. 85, 515–525 (1977).PubMedGoogle Scholar
  8. 8.
    H. Peerenboom, E. Keck, H. L. Kruskemper, and G. Strohmeyer, The defect of intestinal calcium transport in hyperthyroidism and its response to therapy,J. Clin. Endocrinol. Metab. 59, 936–940.Google Scholar
  9. 9.
    P. Garnero, V. Vassy, A. Bertholin, J. P. Riou, and P. D. Delmas, Markers of bone turnover in hyperthyroidism and effects of treatment,Clin. Endocrinol. Metab. 78, 955–959 (1994).CrossRefGoogle Scholar
  10. 10.
    J. E. Rizek, A. Dimich, and S. Wallach, Plasma and erythrocyte magnesium in thyroid disease, J. Clin. Endocrinol. Metab. 25, 350–358 (1965)PubMedGoogle Scholar
  11. 11.
    J. E. Jones, P. C. Desper, S. R. Shane, and E. B. Flink, Magnesium metabolism in hyperthyroidism and hypothyroidism.J. Clin. Invest. 45-49, 891 (1966).Google Scholar
  12. 12.
    T. Ogihara, T. Yamamoto, K. Miyai, and Y. Kumahara, Plasma renin activity and aldosterone concentration of patients with hyperthyroidism and hypothyroidism,Endocrinol. Jpn. 20, 433–443 (1973).PubMedGoogle Scholar
  13. 13.
    M. Montiel, E. Jimenez, J. A. Navaez, and M. Morell, Aldosterone and plasma renin activity in hyperthyroid rats: Effects of propranolol and propylthiouracil.J. Endocrinol. Invest. 7, 559–565 (1984).PubMedGoogle Scholar
  14. 14.
    R. Horton and E. Biglieri, Effect of aldosterone on the metabolism of magnesium,J. Clin. Endocrinol. Metab. 22, 1187–1190 (1972).Google Scholar
  15. 15.
    A. J. Lostroh, and M. E. Krahl, Accumulation in vitro of Mg++ and K+ in rat uterus: Ion pump activity,Bioch. Biophys. Acta 291, 260–264 (1973).CrossRefGoogle Scholar
  16. 16.
    K. Darly and M. D. Granner, Thyroid hormones, inHarper’s Biochemistry, 22nd ed., Prentice-Hall, CT, Int. pp. 487–491 (1990).Google Scholar
  17. 17.
    M. Deluise, and J. S. Flier, Status of the red cell Na, K pump in hyper- and hypothyroidism,Metabolism 32, 25–31 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    C. H. Cole, and R. W. Waddell, Alteration in intracellular sodium concentration and oubain-sensitive ATPase in erythrocytes from hyperthyroid patients,J. Clin. Endocrinol. Metab. 42, 1056 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Zumkley and H. Lehnert, Magnesium, Potassium and hormonal regulation,Magnesium 3, 239–243 (1984).PubMedGoogle Scholar
  20. 20.
    S. Wallach, L. N. Ci, F. H. Rogan, and H. L. Jones, Plasma and erythrocyte magnesium in health and disease,J. Lab. Clin. Med. 59, 195–210 (1962).PubMedGoogle Scholar
  21. 21.
    J. E. Jones, P. C. Desper, S. R. Shane, and E. B. Flink, Magnesium metabolism in hyperthryoidism and hypothyroidism.J. Clin. Invest. 45, 891–386 (1966).PubMedGoogle Scholar
  22. 22.
    Y. Shibutani, T. Yokota, S. Iijima, A. Fujioka, S. Katsuno, and K. Sakamoto, Plasma and erythrocyte magnesium concentrations in thyroid disease: Relation to thyroid function and the duration of illness,Jpn. J. Med. 28, 496–502 (1989).PubMedGoogle Scholar
  23. 23.
    K. Aihara, Y. Nishi, S. Hatano, M. Kihara, K. Yoshimitsu, and N. Takeichi,Am J. Clin. Nutr. 40, 26–35 (1984).PubMedGoogle Scholar
  24. 24.
    Y. Nishi, R. Kawate, and T. Usui, Zinc metabolism in thyroid disease.Postgrad. Med. J. 56, 833–837 (1980).PubMedGoogle Scholar
  25. 25.
    J. R. K. Robson and L. Spell, Erythrocyte zinc,Am J. Clin. Nutr. 34, 1983 (1981).PubMedGoogle Scholar
  26. 26.
    G. Saner, S. SavaŞan, and N. Saka, Zinc metabolism in hypothryoidism,The Lancet 340, 432–433 (1992).CrossRefGoogle Scholar
  27. 27.
    K. Yoshida, Y. Kiso, T. Watanabe, K. Kaise, Y. Itagaki, M. Yamamoto, T. Sakurada, and K. Yoshinga, Erythrocyte zinc in hyperthyroidism: Reflection on integrated thryoid hormone levels over the previous few months,Metabolism 39, 182–186 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    H. S. Yadav, K. K. Nagpal, B. N. Sharma, and B. N. Chaudhuri, Influence of thyroxine and temperature on zinc metabolism.Indian J. Exp. Biol. 18, 993–996 (1980).PubMedGoogle Scholar
  29. 29.
    N. Taniguchi, N. Ishikawa, T. Kondo, Inhibitory effect of thyoxine on carbonic anhydrase B isozyme biosynthesis in rabbit reticulocyte lysates.Biochem. Biophsy. Res. Commun, 85, 952–958 (1978).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Gonul ŞimŞek
    • 1
  • Gulnur Andican
    • 2
  • Yunus Karako©
    • 3
  • Gunner Yiğit
    • 1
  • Husrev Hatemi
    • 4
  • Gulden Candan
    • 2
  1. 1.Department of Physiology, Faculty of MedicineUniversity of IstanbulCerrahpasa, IstanbulTurkey
  2. 2.Department of Biochemistry, Faculty of MedicineUniversity of IstanbulCerrahpasa, IstanbulTurkey
  3. 3.Department of Biophysics, Faculty of MedicineUniversity of IstanbulCerrahpasa, IstanbulTurkey
  4. 4.Department of Endocrinology, Faculty of MedicineUniversity of IstanbulCerrahpasa, IstanbulTurkey

Personalised recommendations