Skip to main content
Log in

Cytoprotection against lipid hydroperoxides correlates with increased glutathione peroxidase activities, but not selenium uptake from different selenocompounds

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cells cultivated under standard conditions were highly deficient in tocopherol, selenium, and glutathione peroxidase (GPx) activities. We investigated whether and to what extent the addition of different selenocompounds to growth media would alter biochemical, physiological, and pathophysiological parameters of cultured liver cells. Cellular uptake of selenium, GPx activities, and cytoprotection were measured and compared in human hepatoma cells (HepG2). Selenite and selenocystine were Se donors of high bioavailability (i.e., with these culture supplements, the increased Se uptake, induction of GPx isoenzymes, and protection of treated cells from lipid hydroperoxides were well correlated). In contrast, selenium from selenomethionine was incorporated into cellular proteins but had no effect on GPx activities or cytoprotection. The data show that not all selenium donors provide selenium, which is bioactivated to act as antioxidant. Thus, cellular selenium content, in general, did not correlate with cytoprotective activity of this trace element. However, cellular GPx activities at different times, with different concentrations, and with different Se donors always correlated with protection from lipid hydroperoxides and may, thus, represent a more reliable parameter to define adequate Se supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Schwarz and C. M. Foltz, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration,J. Am. Chem. Soc. 79, 3292–3293 (1957).

    Article  CAS  Google Scholar 

  2. S. S. Chernick, J. G. Moe, G. P. Rodnan, and K. Schwarz, A metabolic lesion in dietary necrotic liver degeneration.J. Biol. Chem. 217, 829–843 (1958).

    Google Scholar 

  3. F. Ursini and A. Bindoli, The role of selenium peroxidases in the protection against oxidative damage of membranes,Chem. Phys. Lipids 44, 255–276 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. G. C. Mills, Hemoglobin catabolism I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown,J. Biol. Chem. 229, 189–197 (1957).

    PubMed  CAS  Google Scholar 

  5. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, Selenium: biochemical role as a component of glutathione peroxidase,Science 179, 558–590 (1973).

    Article  Google Scholar 

  6. L. Flohé, W. A. Günzler, and H. H. Schock, Glutathione peroxidase: a selenoenzyme,FEBS Lett. 32, 132–134 (1973).

    Article  PubMed  Google Scholar 

  7. F. Ursini, M. Maiorino, R. Brigelius-Flohé, K. D. Aumann, A. Roveri, D. Schomburg, et al., The diversity of glutathione peroxidases,Methods Enzymol. 252, 38–53 (1995).

    PubMed  CAS  Google Scholar 

  8. M. Maiorino, F. F. Chu, F. Ursini, K. J. A. Davies, J. H. Doroshow, and R. S. Esworthy, Phospholipid hydroperoxide glutathione peroxidase is the 18 kDa selenoprotein expressed in human tumor cell lines.J. Biol. Chem. 266, 7728–7732 (1991).

    PubMed  CAS  Google Scholar 

  9. F. Ursini, M. Maiorino, M. Valente, L. Ferri, and C. Gregolin, Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides,Biochim. Biophys. Acta 710, 197–211 (1982).

    PubMed  CAS  Google Scholar 

  10. R. Brigelius-Flohé, K. D. Aumann, H. Blöcker, G. Gross, M. Kiess, K.-D. Klöppel, M. Maiorino, A. Roveri, R. Schuckelt, F. Ursini, E. Wingendorf, and L. Flohé, Phospholipid-hydroperoxide glutathione peroxidase. Genomic DNA, cDNA, and deduced amino acid sequence,J. Biol. Chem. 269, 7342–7348 (1994).

    PubMed  Google Scholar 

  11. R. F. Burk and K. E. Hill, Regulation of selenoproteins,Annu. Rev. Nutr. 13, 65–81 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. D. Behne, C. Weiss-Nowak, M. Kalcklösch, C. Westphal, H. Gessner, and A. Kyriakopoulos, Studies on the distribution and characteristics of new mammalian selenium-containing proteins,Analyst 120, 823–825 (1995).

    Article  CAS  Google Scholar 

  13. D. Behne, A. Kyriakopoulos, H. Meinhold, and J. Köhrle, Identification of type I iodothyronine 5′-deiodinase as selenoenzyme,Biochem. Biophys. Res. Commun. 173, 1143–1149 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. S. C. Vendeland, M. A. Beilstein, C. L. Chen, O. N. Jensen, E. Barofsky, and P. D. Whanger, Purification and properties of selenoprotein-W from rat muscle,J. Biol. Chem. 268, 17103–17107 (1993).

    PubMed  CAS  Google Scholar 

  15. R. Read, T. Bellew, J.-G. Yang, K. E. Hill, I. S. Palmer, and R. F. Burk, Selenium and amino acid composition of selenoprotein P, the major selenoprotein in rat serum,J. Biol. Chem. 265, 17,899–17,905 (1990).

    CAS  Google Scholar 

  16. V. N. Gladyshev, K. T. Jeang, and T. Stadtman, Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene,Proc. Natl. Acad. Sci. USA 93, 6146–6151 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. F. Weitzel and A. Wendel, Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone,J. Biol. Chem. 268, 6288–6292 (1993).

    PubMed  CAS  Google Scholar 

  18. P. G. Geiger, F. Lin, and A. W. Girotti, Selenoperoxidase-mediated cytoprotection against the damaging effects of tert-butyl hydroperoxide on leukemia cells,Free Radical Biol. Med. 14, 251–266 (1993).

    Article  CAS  Google Scholar 

  19. P. G. Geiger, J. P. Thomas, and A. W. Girotti, Lethal damage to murine L1210 cells by exogenous lipid hydroperoxides: protective role of glutathione-dependent selenoperoxidases,Arch. Biochem. Biophys. 288, 671–680 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. L. Kiremidjian-Schumacher, M. Roy, H. I. Wishe, M. W. Cohen, and G. Stotzky, Regulation of cellular immune responses by selenium,Biol. Trace Element Res. 33, 23–35 (1992).

    CAS  Google Scholar 

  21. L. Kiremidjian-Schumacher, M. Roy, H. I. Wishe, M. W. Cohen, and G. Stotzky, Selenium and immune cell functions. I. Effect on lymphocyte proliferation and production of interleukin 1 and interleukin 2,Proc. Soc. Exp. Biol. Med. 193, 136–142 (1990).

    PubMed  CAS  Google Scholar 

  22. M. A. Beck, Q. Sei, V. C. Morris, and O. A. Levander, Rapid genomic evolution of a non-virulent Coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates,Nature Med. 1, 433–36 (1995).

    Article  PubMed  CAS  Google Scholar 

  23. R. F. Burk, Biological activity of selenium,Ann. Rev. Nutr. 3, 53–70 (1983).

    Article  CAS  Google Scholar 

  24. R. Reiter and A. Wendel, Selenium and drug metabolism—III. Relation of glutathione-peroxidase and other hepatic enzyme modulations to dietary supplements,Biochem. Pharmacol. 34, 2287–2290 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. R. D. Baker, S. S. Baker, K. LaRosa, C. Whitney, and P. E. Newburger, Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B,Arch. Biochem. Biophys. 304, 53–57 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. G. Bermano, J. R. Arthur, and J. E. Hesketh, Selective control of the cytosolic glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase gene expression by selenium supply,Biochem. J. 320, 891–895 (1996).

    PubMed  CAS  Google Scholar 

  27. M. S. Saedi, C. G. Smith, J. Frampton, I. Chambers, P. R. Harrison, and R. A. Sunde, Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver,Biochem. Biophys. Res. Commun. 153, 855–861 (1998).

    Article  Google Scholar 

  28. N. B. Javitt, Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids,FASEB J. 4, 161–168 (1990).

    PubMed  CAS  Google Scholar 

  29. M. Leist, F. Gantner, I. Bohlinger, P. G. German, G. Tiegs, and A. Wendel, Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest,J. Immunol. 153, 1778–1787 (1994).

    PubMed  CAS  Google Scholar 

  30. A. T. Natarajan and F. Darroudi, Use of human hepatoma cells for in vitro metabolic activation of chemical mutagens/carcinogens,Mutagenesis 6, 339–403 (1991).

    Article  Google Scholar 

  31. M. Leist, B. Raab, S. Maurer, U. Rösick, and R. Brigelius-Flohé, Conventional cell culture media do not adequately supply cells with antioxidants and thus facilitate peroxide-induce genotoxicity,Free Radical Biol. Med. 21, 297–306 (1996).

    Article  CAS  Google Scholar 

  32. V. W. Bowry, K. K. Stanley, and R. Stocker, High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors,Proc. Natl. Acad. Sci. USA 89, 10,316–10,320 (1992).

    Article  CAS  Google Scholar 

  33. T. Y. Aw, M. W. Williams, and L. Gray, Absorption and lymphatic transport of peroxidized lipids by rat small intestine in vivo: role of mucosal GSH,Am. J. Physiol. 262, G99-G106 (1992).

    PubMed  CAS  Google Scholar 

  34. M. O. Funk, R. Isaac, and N. A. Porter, Preparation and purification of lipid hydroperoxides from arachidonic and gamma-linolenic acid,Lipids 11,,113–117 (1976).

    Article  PubMed  CAS  Google Scholar 

  35. F. J. G. M. van Kuijk, D. W. Thomas, and R. J. D. E. A. Stephens, Gas chromatographymass spectrometry assays for lipid peroxidases,Methods Enzymol. 186, 388–398 (1990).

    PubMed  Google Scholar 

  36. M. Maiorino, C. Gregolin, and F. Ursini, Phospholipid hydroperoxide glutathione peroxidase,Methods Enzymol. 186, 448–457 (1990).

    Article  PubMed  CAS  Google Scholar 

  37. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  38. R. Brigelius-Flohé, K. Lötzer, S. Maurer, M. Schultz, and M. Leist, Utilization of selenium from different chemical entities for selenoprotein biosynthesis by mammalian cell lines,Biofactors 5, 125–131 (1996).

    Google Scholar 

  39. M. Schultz, M. Leist, M. Petrzika, B. Gassmann, and R. Brigelius-Flohé, Novel urinary metabolite of alpha-tocopherol, 2,5,7,8-tetramethyl-2(2′-carboxyethyl)-6-hydroxychroman, as an indicator of an adequate vitamin E supply,Am. J. Clin. Nutr. 62, 1527S-1534S (1995).

    PubMed  CAS  Google Scholar 

  40. D. Behne and H. Jürgensen, Determination of trace elements in human blood serum and in the standard reference material “bovine liver” by instrumental neutron activation analysis,J. Radiolyt. Chem. 42, 447–453 (1978).

    Article  CAS  Google Scholar 

  41. F. Tietze, Enzymatic method for quantitative determination of nanogram amounts of total and oxidised glutathione: application to mammalian blood and other tissues,Anal. Biochem. 27, 502–522 (1969).

    Article  PubMed  CAS  Google Scholar 

  42. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,J. Immunol. Methods 65, 55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

  43. H. U. Bergmeyer,Methods of Enzymatic Analysis, vol. 82, 3rd ed., Verlag Chemie, Weinheim (1984).

    Google Scholar 

  44. Y. Thomassen and J. Aaseth, Selenium in man, inOccurrence and Distribution of Selenium, M. Ihnat, ed., CRC, Boca Raton, FL, pp. 169–212 (1989).

    Google Scholar 

  45. L. J. Machlin,Handbook of Vitamins, Marcel Dekker, New York, p. 113 (1984).

    Google Scholar 

  46. D. Behne, A. Kyriakopoulos, S. Scheid, and H. Gessner, Effect of chemical form and dosage on the incorporation of selenium into tissue proteins in rats,J. Nutr. 121, 806–814 (1991).

    PubMed  CAS  Google Scholar 

  47. G. Bellomo, S. Jewell, H. Thor, and S. Orrenius, regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butyl hydroperoxide,Proc. Natl. Acad. Sci. USA 79, 6842–6846 (1982).

    Article  PubMed  CAS  Google Scholar 

  48. N. Masaki, M. E. Kyle, and J. L. Farber, Tert-butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids,Arch. Biochem. Biophys. 269, 390–399 (1989).

    Article  PubMed  CAS  Google Scholar 

  49. T. Kaneko, S.-I. Nakano, and M. Matsuo, Protective effect of vitamin E on linoleic acid hydroperoxide-induced injury to human endothelial cells,Lipids 26, 345–348 (1991).

    Article  PubMed  CAS  Google Scholar 

  50. I. H. Waschulewski and R. A. Sunde, Effect of dietary methionine on utilization of tissue selenium from dietary selenomethionine for glutathione peroxidase in the rat,J. Nutr. 118, 367–374 (1988).

    PubMed  CAS  Google Scholar 

  51. M. A. Beilstein and P. D. Whanger, Glutathione peroxidase activity and chemical forms of selenium in tissues of rats given selenite or selenomethionine,J. Inorg. Biochem. 33, 31–6 (1988).

    Article  PubMed  CAS  Google Scholar 

  52. J. T. Deagen, J. A. Butler, M. A. Beilstein, and P. D. Whanger, Effects of dietary selenite, selenocystine and selenomethionine on selenocysteine lyase and glutathione peroxidase activities and on selenium levels in rat tissues,J. Nutr. 117, 91–98 (1987).

    PubMed  CAS  Google Scholar 

  53. T. C. Stadtman, Biosynthesis and function of selenocysteine-containing enzymes,J. Biol. Chem. 266, 16,257–16,260 (1991).

    CAS  Google Scholar 

  54. K. P. McConnell and J. L. Hoffman, Methionine-selenomethionine parallels in rat liver polypeptide chain synthesis,FEBS Lett. 24, 60–62 (1972).

    Article  PubMed  CAS  Google Scholar 

  55. R. A. Sunde, G. E. Gutzke, and W. G. Hoekstra, Effect of dietary methionine on the biopotency of selenite and selenomethionine in the rat,J. Nutr. 110,,1096–1100 (1980).

    Google Scholar 

  56. K. Yasumoto and K. Y. M. Iwami, Vitamin B6-dependence of selenomethionine and selenite utilization for glutathione peroxidase in the rat,J. Nutr. 109, 760–766 (1979).

    PubMed  CAS  Google Scholar 

  57. M. A. Beilstein and P. D. Whanger, Selenium metabolism and glutathione peroxidase activity in cultured human lymphoblasts. Effects of transsulfuration defects and pyridoxal phosphate,Biol. Trace Element Res. 35, 105–118 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leist, M., Maurer, S., Schultz, M. et al. Cytoprotection against lipid hydroperoxides correlates with increased glutathione peroxidase activities, but not selenium uptake from different selenocompounds. Biol Trace Elem Res 68, 159–174 (1999). https://doi.org/10.1007/BF02784404

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784404

Index Entries

Navigation