Skip to main content
Log in

Relative effects ofLittoraria irrorata andProkelisia marginata onSpartina alterniflora

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Spartina alterniflora salt marshes along the southeastern United States are some of the most productive and well studied ecosystems in the world. The role of physicochemical forces in regulatingSpartina growth is well understood, while the importance of grazers remains less clear. Recent studies have shown that the abundant marsh periwinkle,Littoraria irrorata, can exert strong control overSpartina through its grazing activities, but relatively little is known about its relative effects in comparison to other marsh plant consumers. To test the relative importance of snail and insect consumers onSpartina biomass, we conducted a 7-mo field experiment testing top-down regulation ofSpartina with all combinations ofL. irrorata (removed, control, c. 215 periwinkles m−2) andSpartina planthopper,Prokelisia marginata (removed, control). Snail removal resulted in a 50% increase inSpartina biomass while removal of planthoppers had no detectable effect. Planthopper density also increased by 50% when snails were excluded. In this South Carolina marsh,L. irrorata exerts a stronger top-down control ofSpartina thanP. marginata. These results indicate trophic cascade regulation ofSpartina salt marsh is more likely to occur through the predator(s)-Littoraria-plant interaction than through the predator(s)-Prokelisia-plant relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Bingham, F. O. 1972. Shell growth in the gastropodLittorina irrorata.Nautilus 85:136–141.

    Google Scholar 

  • Bradley, P. M. andJ. T. Morris. 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics inSpartina alterniflora.Ecology 71:282–287.

    Article  CAS  Google Scholar 

  • Cardinale, B. J., C. T. Harvey, K. Gross, andA. R. Ives. 2003. Biodiversity and biocontrol: Emergent impacts of a multiple-enemy assemblage on pest suppression and crop yield in an agroecosystem.Ecology Letters 6:857–865.

    Article  Google Scholar 

  • Cardinale, B. J., M. A. Palmer, andS. J. Collins. 2002. Species diversity enhances ecosystem functioning through interspecific facilitation.Nature 415:426–429.

    Article  CAS  Google Scholar 

  • Cotton, P. A., S. D. Rundle, andK. E. Smith. 2004. Trait compensation in marine gastropods: Shell shape, avoidance behavior, and susceptibility to predation.Ecology 85:1581–1584.

    Article  Google Scholar 

  • Daehler, C. C. andD. R. Strong. 1997. Reduced herbivory resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivory-free growth.Oecologia 110:99–108.

    Article  Google Scholar 

  • Denno, R. F., C. Gratton, M. A. Peterson, G. A. Langellotto, D. L. Finke, andA. F. Huberty. 2002. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community.Ecology 83:1443–1458.

    Google Scholar 

  • Denno, R. F. andM. A. Peterson. 2002. Caught between the devil and the deep blue sea, mobile planthoppers elude natural enemies and deteriorating host plants.American Entomologist 46: 95–109.

    Google Scholar 

  • Duffy, J. E. 2003. Biodiversity loss, trophic skew and ecosystem functioning.Ecology Letters 6:680–687.

    Article  Google Scholar 

  • Finke, D. L. andR. F. Denno. 2004. Predator diversity dampens trophic cascades.Nature 429:407–410.

    Article  CAS  Google Scholar 

  • Furbish, C. E. andM. Albano. 1994. Selective herbivory and plant community structure in a mid-Atlantic salt marsh.Ecology 75: 1015–1022.

    Article  Google Scholar 

  • Grevstad, F. S., D. R. Strong, D. Garcia-Rossi, R. W. Switzer, andM. S. Wecker. 2003. Biological control ofSpartina alterniflora in Willapa Bay, Washington using the planthopperProkelisia marginata: Agent specificity and early results.Biological Control 27:32–42.

    Article  Google Scholar 

  • Hamilton, P. V. 1978. Intertidal distribution and long-term movements ofLittorina irrorata (Mollusca: Gastropoda).Marine Biology 46:49–58.

    Article  Google Scholar 

  • Heck, K. L., J. R. Pennock, J. F. Valentine, L. D. Coen, andS. A. Sklenar. 2000. Effects of nutrient enrichment and small predator density on seagrass ecosystems: An experimental assessment.Limnology and Oceanography 45:1041–1057.

    Article  CAS  Google Scholar 

  • Hillebrand, H. 2005. Light regime and consumer control of autotrophic biomass.Journal of Ecology 93:758–769.

    Article  Google Scholar 

  • Howes, B. L., J. W. H. Dacey, andD. D. Goehringer. 1986. Factors controlling the growth form ofSpartina alterniflora: Feedbacks between above-ground production, sediment oxidation, nitrogen and salinity.Journal of Ecology 74:881–898.

    Article  Google Scholar 

  • Johnson Randall, L. A. andA. L. Foote. 2005. Effects of managed impoundments and herbivory on wetland plant production and stand structure.Wetlands 25:38–50.

    Article  Google Scholar 

  • Leonard, G. H., J. M. Levin, P. R. Schmidt, andM. D. Bertness. 1998. Flow-driven variation in intertidal community structure in a Maine estuary.Ecology 79:1395–1411.

    Google Scholar 

  • Mendelssohn, I. A. andJ. T. Morris. 2000. Eco-physiological controls on the productivity ofSpartina alterniflora Loisel, p. 59–80.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Boston, Massachusetts.

    Google Scholar 

  • Moon, D. C. andP. Stiling. 2002. The influence of species identity and herbivore feeding mode on top-down and bottomup effects in a salt marsh system.Oecologia 133:243–253.

    Article  Google Scholar 

  • Morin, P. J. andS. P. Lawler. 1995. Food web architecture and population dynamics: Theory and empirical evidence.Annual Review of Ecology and Systematics 26:505–529.

    Article  Google Scholar 

  • Mulder, C. P. H., J. Koricheva, K. Huss-Danell, P. Hogberg, andJ. Joshi. 1999. Insects affects relationships between plant species richness and ecosystem processes.Ecology Letters 2:237–246.

    Article  Google Scholar 

  • Ngia, J. T. andR. L. Jefferies. 2004. Nutrient limitations of plant growth and forage quality in Arctic coastal marshes.Journal of Ecology 92:1001–1010.

    Article  Google Scholar 

  • Norberg, J. 2000. Resource-niche complementarity and autotrophic compensation determines ecosystem level responses to increased cladoceran species richness.Oecology 122:264–272.

    Article  Google Scholar 

  • Pauly, D., V. Christensen, J. Dalsgaard, R. Froese, andF. J. Torre. 1998. Fishing down marine food webs.Science 279:860–863.

    Article  CAS  Google Scholar 

  • Pennings, S. C., T. H. Carefoot, E. L. Siska, M. E. Chase, andT. A. Page. 1998. Feeding preferences of a generalist salt marsh crab: Relative importance of multiple plant traits.Ecology 79:1968–1979.

    Google Scholar 

  • Petchey, O. L., P. T. McPherson, T. M. Casey, andP. J. Morin. 1999. Environmental warming alters food-web structure and ecosystem function.Nature 402:69–72.

    Article  CAS  Google Scholar 

  • Rohde, S., M. Molis, andM. Wahl. 2004. Regulation of antiherbivore defense byFucus vesiculosus in response to various cues.Journal of Ecology 92:1011–1018.

    Article  Google Scholar 

  • Silliman, B. R. andM. D. Bertness. 2002. A trophic cascade regulates salt marsh primary production.Proceedings of the National Academy of Sciences 99:10500–10505.

    Article  CAS  Google Scholar 

  • Silliman, B. R. andA. Bortolus. 2003. Underestimation ofSpartina production in western Atlantic salt marshes: Marsh invertebrates eat more than just detritus.Oikos 101:549–555.

    Article  Google Scholar 

  • Silliman, B. R., C. A. Layman, K. Geyer, andJ. C. Zieman. 2004. Predation by the black-clawed mud crab,Panopeus herbstii, in mid-Atlantic salt marshes: Further evidence for top-down control of marsh grass production.Estuaries 27:188–196.

    Article  Google Scholar 

  • Silliman, B. R. andS. Y. Newell. 2003. Fungal farming in a snail.Proceeding of the National Academy of Sciences 100:15643–15648.

    Article  CAS  Google Scholar 

  • Silliman, B. R., J. van der Koppel, M. D. Bertness, L. E. Stanton, andI. A. Mendelssohn. 2005. Drought, snails, and large-scale die-off of southern U.S. salt marshes.Science 310:1803–1806.

    Article  CAS  Google Scholar 

  • Silliman, B. R. andJ. C. Zieman. 2001. Top-down control ofSpartina alterniflora production by periwinkle grazing in a Virginia marsh.Ecology 82:2830–2843.

    Google Scholar 

  • Smith, T. J. andW. E. Odum. 1983. The effects of grazing by snow geese on coastal salt marshes.Ecology 62:98–106.

    Google Scholar 

  • Stanhope, H. S., W. C. Banta, andM. H. Temkin. 1982. Size-specific emergence of the marsh snail,Littorina irrorata: Effect of predation by blue crabs in a Virginia salt marsh.Gulf Research Reports 7:179–182.

    Google Scholar 

  • Taylor, K. L. andJ. B. Grace. 1995. The effects of vertebrate herbivory on plant community structure in the coastal marshes of the Pearl River, Louisiana, USA.Wetlands 15:68–73.

    Google Scholar 

  • Tucker, A. D., N. N. Fitzsimmons, andJ. W. Gibbons. 1995. Resource partitioning by the estuarine turtle,Malaclemys terrapin: Trophic, spatial and temporal foraging constraints.Herpetologica 51:167–181.

    Google Scholar 

  • Valiela, I. andJ. M. Teal. 1979. The nitrogen budget of a salt marsh ecosystem.Nature 280:652–656.

    Article  CAS  Google Scholar 

  • van der Wal, R. andR. W. Brooker. 2004. Mosses mediate grazer impacts on grass abundance in Arctic ecosystems.Functional Ecology 18:77–86.

    Article  Google Scholar 

  • Vaughn, C. C. andF. M. Fisher. 1992. Dispersion of the salt-marsh periwinkleLittoraria irrorata: Effects of water level, size, and season.Estuaries 15:246–250.

    Article  Google Scholar 

  • Vaughn, C. C. andF. M. Fisher. 1988. Vertical migration as a refuge from predation in intertidal marsh snails: A field test.Journal of Experimental Marine Biology and Ecology 123:163–176.

    Article  Google Scholar 

  • Warren, J. H. 1985. Climbing as an avoidance behaviour in the salt marsh periwinkle,Littorina irrorata (Say).Journal of Experimental Marine Biology and Ecology 89:11–28.

    Article  Google Scholar 

  • Weinstein, M. P. andD. A. Kreeger. 2000. Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Boston, Massachusetts.

    Google Scholar 

  • West, D. L. andA. H. Williams. 1986. Predation byCallinectes sapidus (Rathbun) withinSpartina alterniflora (Loisel) marshes.Journal of Experimental Marine Biology and Ecology 100:75–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny J. Gustafson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafson, D.J., Kilheffer, J. & Silliman, B.R. Relative effects ofLittoraria irrorata andProkelisia marginata onSpartina alterniflora . Estuaries and Coasts: J ERF 29, 639–644 (2006). https://doi.org/10.1007/BF02784288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784288

Keywords

Navigation