Biological Trace Element Research

, Volume 71, Issue 1, pp 65–76 | Cite as

Nuclear microscopy in the life sciences at the national university of singapore

A Review
  • M. Q. Ren
  • P. S. P. Thong
  • J. Makjanic
  • D. Ponraj
  • F. Watt
Section 2: Spatial and Chemical Speciation of Elements


The nuclear microscope is now gaining popularity in the field of life sciences. In particular, the combination of proton-induced X-ray emission to measure the elemental concentrations of inorganic elements, Rutherford backscattering spectrometry to characterize the organic matrix, and scanning transmission ion microscopy to provide information on the density and structure of the sample represents a powerful set of techniques that can be applied simultaneously to the specimen under investigation. These techniques are extremely useful for measuring any imbalances in trace elements in localized regions of biological tissue and, as such, can provide unique information on many diseases. In this article, we describe the nuclear microscope and its related ionbeam techniques, and we review the biomedical work carried out using the nuclear microscope in the National University of Singapore.

Index Entries

Proton-induced X-ray emission Rutherford back scattering spectrometry scanning transmission ion microscopy atherosclerosis epilepsy Parkinson’s disease Alzheimer’s disease cellular composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Wroblewski and Wroblewski, X-ray microanalysis of cultured mammalian cells, in X-rayMicroanalysis in Biology: Experimental Techniques and Applications, D. C. Sigee et al. eds. Cambridge University Press, Cambridge, UK, New York, NY, pp. 317–329 (1993).Google Scholar
  2. 2.
    M. Cholewa, I. F. Turnbull, G. J. F. Legge, H. Weigold, S. M. Marcuccio, G. Holan, et al. Investigation of the uptake of drugs by individual cells using a scanning proton microprobe,Cell. Mol. Biol. 42 (1), 69–176 (1996).PubMedGoogle Scholar
  3. 3.
    R. Ortega, P. Moretto, A. Fajac, J. Benard, Y. Llabador, and M. Simonoff, Quantitative mapping of platinum and essential trace metal in cisplatin resistant and sensitive human ovarian adenocarcinoma cells,Cell. Mol. Biol. 42 (1), 77–88 (1996).PubMedGoogle Scholar
  4. 4.
    Y. Llabador and Ph. Moretto,Applications of Nuclear Microprobe in the Life Sciences, World Scientfic, Singapore, 1998.Google Scholar
  5. 5.
    F. Watt, I. Orlic, K. K. Loh, C. H. Show, P. Thong, S. C. Liew, et al.,Nucl. Instrum. Methods B 85, 708–715 (1994).CrossRefGoogle Scholar
  6. 6.
    S. A. E. Johansson and J. L. Campbell,PIXE: A Novel Techniques for Elemental Analysis, Wiley, Chichester (1988).Google Scholar
  7. 7.
    W. K. Chu, J. W. Mayer, and M. A. Nicolet,Backscattering Spedrometry, Academic, New York (1978).Google Scholar
  8. 8.
    J. C. Overley, R. C. Connolly, G. E. Seiger, J. D. McDonald, and H. W. Lefevre,Nucl. Iustrum Methods 218, 43 (1983).CrossRefGoogle Scholar
  9. 9.
    R. M. Sealock, A. P. Mazzolini, and G. J. F. Legge,Nucl. lustrum Methods 218, 217 (1983).CrossRefGoogle Scholar
  10. 10.
    D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum, Beyond cholesterol: modifications of low-density lipoproteins that increase its atherogenicity,N. Engl. J. Med. 320, 915–924 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    P. S. P. Thong, M. Selley, and F. Watt,Cell. Mol. Biol. 42, 103–110 (1996).PubMedGoogle Scholar
  12. 12.
    W. Krohn,Acta Psychiatr. Scand. 36 (Suppl. 150), 215–225 (1961).CrossRefGoogle Scholar
  13. 13.
    M. Brewis, D. C. Rolland, and H. Miller,Acta Neurol. Scand. 42, 1–189 (1966).PubMedGoogle Scholar
  14. 14.
    Y Ben-Ari,Neuroscience,14 (2), 375–403 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    C. W. Olanow, An introduction to the free radical hypothesis in Parkinson’s disease,Ann. Neurol. 32 (Suppl.), S2-S9 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    Y He, P. Thong, T. Lee, S. K. Leong, C. Y. Shi, P. T. H. Wong, et al.,Brain Res. 735 149–153 (1996).PubMedCrossRefGoogle Scholar
  17. 17.
    J. A. Temlett, J. P. Landsberg, F. Watt, and G. W. Grime,J. Neurochem. 62 (1), 134 (1994).PubMedCrossRefGoogle Scholar
  18. 18.
    P. S. P. Thong, Y. He, T. Lee, and F. Watt,Nucl. Iustrum Methods Phys. Res. B 130, 460–465 (1997).CrossRefGoogle Scholar
  19. 19.
    B. E. Tomlinson, G. Blessed, and M. Roth, Observations on the brains of demented old people,J. Neurol. Sci. 11, 205–242 (1970).PubMedCrossRefGoogle Scholar
  20. 20.
    J. M. Candy, J. Klinowski, R. H. Perry, E. K. Perry, A. Fairbaim, A. E. Oakley, et al., Aluminosilicates and senile plaque formation in Alzheimer’s disease,Lancet, No. 8477, February, 354–357 (1986).Google Scholar
  21. 21.
    P. F. Good, D. P. Perl, L. M. Bierer, and J. Schmeidler, Selective accumulation of aluminium and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microscope (LAMMA) study,Ann. Neurol. 31 (3), 286–292 (1996).CrossRefGoogle Scholar
  22. 22.
    J. P. Landsberg, B. Mcdonald, and F. Watt, Absence of aluminium in neuritic plaque cores in Alzheimer’s disease,Nature 360, 65–67 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Makjanic, B. McDonald, and E Watt, Nuclear microscopy study of neurofibrillary tangles in Alzheimer’s disease,Nucl. lustrum. Methods B130, 439–443 (1997).CrossRefGoogle Scholar
  24. 24.
    M. Q. Ren, P. S. P. Thong, U. Kara, and F. Watt, Single cell elemental analysis using nuclear microscopy,Nucl. lustrum. Methods B150, 179–184 (1999).CrossRefGoogle Scholar
  25. 25.
    K. H. Sit, R. Paramanantham, B. H. Bay, H. L. Chan, K. P. Wong, P. Thong, et al.,Anat. Rec. 245, 1–8 (1996).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • M. Q. Ren
    • 1
  • P. S. P. Thong
    • 1
  • J. Makjanic
    • 1
  • D. Ponraj
    • 1
  • F. Watt
    • 1
  1. 1.Research Centre for Nuclear Microscopy, Department of PhysicsNational University of SingaporeSingapore

Personalised recommendations