Advertisement

Biological Trace Element Research

, Volume 55, Issue 1–2, pp 9–20 | Cite as

Comparison of selenium levels in pre-eclamptic and normal pregnancies

  • Margaret P. Rayman
  • Fadi R. Abou-Shakra
  • Neil I. Ward
  • Christopher W. G. Redman
Accelerated Article

Abstract

Abnormal placentation is the likely cause of the slow fetal growth and the high levels of circulating lipid peroxides found in severe preeclampsia. These peroxides are probably responsible for the high thromboxane:prostacyclin ratio found in this disease and may participate in the endothelial cell damage which is its most notable feature. Selenium (Se), because of its role in glutathione peroxidase, is suggested to be an important component of the removal system for these damaging peroxides. Serum-Se concentrations have therefore been measured in 19 pairs of pre-eclamptic women and matched controls. Infant birth-weights were recorded. No significant difference was found in the concentrations of Se in pre-eclamptic and control groups. Serum Se was found to be low in both groups. Birthweights were significantly lower in the pre-eclamptic group. The interpretation of serum-Se measurements from the third trimester of a pre-eclamptic pregnancy is complicated by the reduced fetal growth and probable lower Se take-up by the fetus in such a pregnancy. The merits of alternative measurements, such as total intravascular Se, placental Se, or samples from an earlier stage of gestation, are discussed. The importance of factors other than Se to the activity of glutathione peroxidase, and of other antioxidants to pre-eclampsia, is stressed.

Index entries

Pre-eclampsia pregnancy-induced hypertension, pregnancy selenium glutathione peroxidase antioxidants serum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Roberts, R. N. Taylor, T. J. Musci, G. M. Rodgers, C. A. Hubel, and M. K. McLaughlin, Pre-eclampsia: an endothelial cell disorder.Am. J. Obstet. Gynecol. 161, 1200–1204 (1989).PubMedGoogle Scholar
  2. 2.
    H. P. Zahradnik, W. Schafer, B. Wetzka, and M. Brockwoldt, Hypertensive disorders in pregnancy,Eicosanoids 4, 123–136 (1991).PubMedGoogle Scholar
  3. 3.
    R. Arngrimsson, S. Bjornsson, R. T. Geirsson, H. Bjornsson, J. J. Walker, and G. Snaedal, Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population.Br. J. Obstet. Gynaecol. 97, 762–769 (1990).PubMedGoogle Scholar
  4. 4.
    H. S. Klonoff-Cohen, D. A. Avitz, R. C. Cefalo, and M. F. McCann, An epidemiologic study of contraception and pre-eclampsia.JAMA 252, 3143–3147 (1989).CrossRefGoogle Scholar
  5. 5.
    B. M. Sibai, Immunological aspects of pre-eclampsia,Clin. Obstet. Gynecol. North Am. 34, 27–34 (1991).CrossRefGoogle Scholar
  6. 6.
    W. B. Robertson, I. Brosens, and W. L. Landells, Abnormal Placentation,Obstet. Gynec. Ann. 14, 411–426 (1985).Google Scholar
  7. 7.
    T. Y. Khong, F. De Wolf, W. B. Robertson, and I. Brosens, Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational-age infants.Br. J. Obstet. Gynaecol. 92, 1049–1059 (1986).Google Scholar
  8. 8.
    C. W. G. Redman, The placenta and pre-eclampsia,Placenta 12, 301–308 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    D. Wickens, M. H. Wilkins, J. Lunec, G. Ball, and T. L. Dormandy, Free-radical oxidation (peroxidation) products in normal and abnormal pregnancy,Ann. Clin. Biochem. 18, 158–162 (1981).PubMedGoogle Scholar
  10. 10.
    C. A. Hubel, J. M. Roberts, R. N. Taylor, T. J. Musci, G. M. Rogers, and M. K. McLaughlin, Lipid peroxidation in pre-eclampsia: new perspectives on pre-eclampsia,Am. J. Obstet. Gynecol..161, 1025–1034 (1989).PubMedGoogle Scholar
  11. 11.
    J. M. Roberts, R. N. Taylor, and A. Goldfien, Clinical and biochemical evidence of endothelial cell dysfunction in the pregnancy syndrome pre-eclampsia,Am. J. Hypertension 4, 700–708 (1991).Google Scholar
  12. 12.
    J. A. Salmon, D. R. Smith, R. J. Flower, S. Moncada, and J. R. Vane, Further studies on the enzymatic conversion of prostaglandin endoperoxide into prostacyclin by porcine aorta microsomes,Biochim. Biophys. Acta 523, 250–262 (1978).PubMedGoogle Scholar
  13. 13.
    J. Turk, A. Wycke, and P. Needleman, Inactivation of vascular prostacyclin synthetase.Biochem. Biophys. Res. Commun. 95, 1628–1634 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Moncada and J. R. Vane, inBiochemical Aspects of Prostaglandins and Thromboxanes, N. Kharaschand J. Fried, eds., Academic, New York, p. 155 (1977).Google Scholar
  15. 15.
    N. W. Schoene, V. C. Morris, and O. A. Levander, Effects of selenium deficiency on arachidonic acid metabolism and aggregation in rat platelets, inProstaglandins, Leukotrienes and Lipoxins, J. Martin Bailey, ed., Plenum, New York, pp. 379–385 (1985).Google Scholar
  16. 16.
    S. W. Walsh, Pre-eclampsia: an imbalance in placental prostacyclin and thromboxane production,Am. J. Obstet. Gynecol. 152, 335–40 (1985).PubMedGoogle Scholar
  17. 17.
    G. Chen, R. Wilson, G. Cumming, J. J. Walker, W. Ewen Smith, and J. H. Mc Killop, Prostacyclin, thromboxane and antioxidant levels in pregnancy-induced hypertension,Eur. J. Obstet. Gynecol. Reprod. Biol. 50, 243–250 (1993).PubMedCrossRefGoogle Scholar
  18. 18.
    Y. Wang, S. W. Walsh, J. Guo, and J. Zhang. The imbalance between thromboxane and prostacyclin in preeclampsia is associated with an imbalance between lipid peroxides and vitamin E in maternal blood.Am. J. Obstet Gynecol. 165, 1695–1700 (1991).PubMedGoogle Scholar
  19. 19.
    M. S. Mikhail, A. Anyaegbunam, D. Garfinkel, P. R. Palan, J. Basu, and S. L. Romney, Pre-eclampsia and antioxidant nutrients: Decreased plasma levels of reduced ascorbic acid, α-tocopherol, and beta-carotene in women with pre-eclampsia.Am. J. Obstet. Gynecol. 171, 150–157 (1994).PubMedGoogle Scholar
  20. 20.
    K. Kisters, C. Spieker, I. Fafera, M. Tepel, C. Muller, K. H. Rahn, and W. Zidek, Copper, zinc and plasma and intracellular magnesium concentrations in pregnancy and pre-eclampsia.Tr. Elem. Med. 10, 158, (1993).Google Scholar
  21. 21.
    R. W. Bryant and J. M. Bailey, Altered lipoxygenase metabolism and decreased glutathione peroxidase acctivity in platelets from selenium-deficient rats,Biochem. Biophys. Res. Commun. 92, 268–276 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    Y. Wang, S. W. Walsh, and H. H. Kay, Placental lipid peroxides and thromboxane are increased and prostacyclin is decreased in women with pre-eclampsia,Am. J. Obstet. Gynecol. 167, 946–949 (1992).PubMedGoogle Scholar
  23. 23.
    P. L. Ogburn Jr., S. Maynard, P. Williams, G. James, S. Johnson, and R. Holman, Arachiodonic acid metabolism and pre-eclampsia,Tenth World Congress of Gynecology and Obstetrics Abstracts, San Francisco, California, October 17–22, 89 (1982).Google Scholar
  24. 24.
    S. W. Walsh and V. M. Parisi, The role of arachidonic acid metabolites in preeclampsia,Semin. Perinatol. 10, 334–355 (1986).PubMedGoogle Scholar
  25. 25.
    R. W. Bryant, T. C., Simon, and J. M. Bailey, Hydroperoxy fatty acid formation in selenium-deficient rat platelets: coupling of glutathione peroxidase to the lipoxygenase pathway.Biochem. Biophys. Res. Commun.,117, 183–189 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    R. Schiavon, G. E. Freeman, G. C. Guidi, G. Perona, M. Zatti, and V. V. Kakkar, Selenium enhances prostacyclin production by cultured endothelial cells: possible explanation for increased bleeding times in volunteers taking selenium as a dietary supplement,Thromb Res 34, 389–396 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    S. W. Walsh and Y. Wang, Deficient glutathione peroxidase activity in pre-eclampsia is associated with increased placental production of thromboxane and lipid peroxides,Am. J. Obstet. Gynecol. 169, 1456–61 (1993).PubMedGoogle Scholar
  28. 28.
    L. Han and S. M. Zhou, Selenium supplement in the prevention of pregnancy induced hypertension,Chin. Med. J. Engl. 107, 870–871 (1994).PubMedGoogle Scholar
  29. 29.
    A. T. Diplock, Indexes of selenium status in human populations.Am. J. Clin. Nutr. Suppl. 57, 256S-258S (1993).Google Scholar
  30. 30.
    D. J. Pearson, J. P. Day, V. J. Suarez-Mendez, P. F. Miller, S. Owen, and A. Woodcock, Human selenium status and glutathione peroxidase activity in north-west England,Eur. J. Clin. Nutr. 44, 277–283 (1990).PubMedGoogle Scholar
  31. 31.
    A. MacPherson, R. Scott, M. N. I. Barclay, and J. Dixon. Plasma selenium concentration of the Scottish population in decline.Proc. Nutr. Soc. 53, 262a (1994).Google Scholar
  32. 32.
    J. A. Butler, P. D. Whanger, and M. J. Tripp, Blood selenium and glutathione peroxidase activity in pregnant women: comparative assays in primates and other animals,Am. J. Clin. Nutr. 36, 15–23 (1982).PubMedGoogle Scholar
  33. 33.
    J. Neve, Methods in determination of selenium status,J. Trace Elements Electrolytes Health Dis. 5, 1–17 (1991).Google Scholar
  34. 34.
    D. Behne and W. Wolters, Selenium content and glutathione peroxidase activity in the plasma and erythrocytes of non-pregnant and pregnant women.J. Clin. Chem. Clin. Biochem. 17, 133–135 (1979).PubMedGoogle Scholar
  35. 35.
    B. A. Zachara C. Wardak, W. Didlowski, A. Maciag, and E. Marchaluk, Changes in blood selenium and glutathione concentrations and glutathione peroxidase activity in human pregnancy,Gynecol. Obstet. Invest. 35, 12–17 (1993).PubMedGoogle Scholar
  36. 36.
    G. Peiker, B. Müller, H. Dawezynski, and K. Winnefeld, Selenium in serum and erythrocytes in normal and risk pregnancy (pregnancy-induced hypertension, fetal retardation and hepatosis),Zent. Bl. Gynäkol. 113, 45–48 (1991).Google Scholar
  37. 37.
    M. P. Rayman, F. R. Abou-Shakra, and N. I. Ward, Determination of selenium in blood serum by hydride generation inductively coupled mass spectrometry,J. Anal. At. Spectrom. 11, 61–68 (1996).CrossRefGoogle Scholar
  38. 38.
    Yudkin, Aboualfa, Eyre, Redman, and Wilkinson,Oxford Standards, Castlemead, Ware, Herts. UK (1987).Google Scholar
  39. 39.
    A. Kauppila, L. Viinikka, U. M. Makila, E. Yrjanheikki, and H. Korpela, Relationship of serum selenium and lipid peroxidation in preeclampsia, inSelenium in Biology and Medicine, 3rd International Symposium, Beijing, China, G. F. Combs Jr. J. E. Spallholz, O. A. Levander, and J. E. Oldfield, eds., 107 pp. 996–1001 (1984).Google Scholar
  40. 40.
    J. Uotila, R. Tuimala, and K. Pyykkö, Erythrocyte glutathione peroxidase activity in hypertensive complications of pregnancy,Gynecol. Obstet. Invest. 29, 259–262 (1990).PubMedGoogle Scholar
  41. 41.
    G. Peiker, M. Kretzschmar, H. Dawczynski, and B. Müller, Lipid peroxidation in pathologic pregnancy: pregnancy-induced hypertension,Zent. Bl. Gynäkol. 113, 183–188 (1991).Google Scholar
  42. 42.
    S. A. Friedman, Pre-eclampsia: a review of the role of prostaglandins,Obstet. Gynecol. 71, 122–137 (1988).PubMedGoogle Scholar
  43. 43.
    J. Neve, Selenium et grossesse,Rev. Fr. Gynecol. Obstet. 85, 29–33 (1990).PubMedGoogle Scholar
  44. 44.
    J. R. Arthur and G. J. Beckett, New metabolic roles for selenium,Proc. Nutr. Soc. 53, 615–624 (1994).PubMedCrossRefGoogle Scholar
  45. 45.
    J. T. Uotila, R. J. Tuimala, T. M. Aarnio, K. A. Pyykkö, and M. O. Ahotupa, Findings on lipid peroxidation and antioxidant function in hypertensive complications of pregnancy,Br. J. Obstet. and Gynaecol. 100, 270–276 (1993).Google Scholar
  46. 46.
    J. Uotila, R. Tuimala, K. Pyykkö, and M. Ahotupa, Pregnancy-induced hypertension is associated with changes in maternal and umbilical blood antioxidants.Gynecol. Obstet. Invest. 36, 153–157 (1993).PubMedCrossRefGoogle Scholar
  47. 47.
    S. V. Gunko, N. F. Leus, and V. A. Gunko, Status of selenium metabolism in the screening of pregnant women during the second half of pregnancy,Vopr. Med. Khim. 36, 76–78 (1990).Google Scholar
  48. 48.
    S. Bro, H. Berendtsen, J. Norgaard, A. Host, and P. J. Jorgensen, Serum selenium concentration in maternal and umbelical cord blood. Relation to course and outcome of pregnancy,J. Trace Elem. Health Dis. 2, 165–169 (1988).Google Scholar
  49. 49.
    C. D. Thomson and M. F. Robinson, Selenium in human health and disease with emphasis on those aspects peculiar to New Zealand.Am. J. Clin. Nutr. 33, 303–323 (1980).PubMedGoogle Scholar
  50. 50.
    M. N. I. Barclay, A. MacPherson, and J. Dixon, Selenium content of a range of U. K. foods,J. of Food Composition and Analysis 8, 307–318 (1995).CrossRefGoogle Scholar
  51. 51.
    A. MacPherson, M. N. I. Barclay, R. Scott, R. W. S. Yates, J. R. T. Coutts, and B. M. Groden, Change in selenium intake and effet on selenium status of Scottish population 1978–1995,Trace Elem. Exptl. Med. 8, 93 (1995).Google Scholar
  52. 52.
    G. Lockitch Selenium: clinical significance and analytical concepts,Cri. Rev. Clin. Lab. Sci. 27, 483–541 (1989).CrossRefGoogle Scholar
  53. 53.
    J. R. Arthur, F. Nicol, and G. J. Beckett, Hepatic iodothyronine 5′-deiodinase. The role of selenium,Biochem. J. 272, 537–540 (1990).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Margaret P. Rayman
    • 1
  • Fadi R. Abou-Shakra
    • 1
  • Neil I. Ward
    • 1
  • Christopher W. G. Redman
    • 2
  1. 1.ICP-MS Facility, Department of ChemistryUniversity of SurreyGuildfordUK
  2. 2.Nuffield Department of Obstetrics and Gynaecology, John Radcliffe HospitalUniversity of OxfordOxfordUK

Personalised recommendations