Biological Trace Element Research

, Volume 67, Issue 2, pp 139–150 | Cite as

Combined effect of high-fat diet and copper deficiency during gestation on fetal copper status in the rat

  • Osama Ebesh
  • Anthony Barone
  • Rita G. Harper
  • Raul A. Wapnir
Original Articles


We have previously shown that a low-copper (Cu) diet produced alterations in placental Cu transport and fetal Cu stores. Because Cu deficiency has been associated with lipid deposition in rat dam liver, we hypothesized that a high fat intake, a prevalent dietary habit in many populations, may worsen fetal Cu status and its closely linked iron (Fe) deposits. Pregnant rats were fed one of four diets during the second half of gestation: NFNCu: normal fat (7%), normal Cu (6 mg/kg); HFNCu: high fat (21%), normal Cu; NFLCu: normal fat, low Cu (0.6 mg/kg), and HFLCu: high fat, low Cu. One day before delivery, dams were anesthetized, and maternal as well as fetal plasma and tissues were obtained. Maternal, fetal, and placental weights were indistinguishable regardless of the group. Dam plasma Cu and placental Cu were lower in both LCu groups than in the NFNCu or the HFNCu groups. However, fetal plasma Cu was similar in all treatment groups. Dam and fetal liver Cu stores were reduced in the LCu groups compared to the NCu groups. This resulted in lower fetal/maternal liver Cu ratios in the NFLCu (1.79 ± 0.14,p < 0.05) and HFLCu (1.59 ± 0.21,p < 0.05) as compared to the NFNCu (4.12 ± 0.44) and the HFNCu (4.15 ± 0.27). Dam liver Fe was higher in the NFNCu than in HFNCu group (1.10 ± 0.8 vs. 0.89 ± 0.06 μmol/g,p < 0.05); fetal liver Fe from HFNCu and NFLCu dams was lower than that from NFNCu fetuses (NFNCu: 2.42 ± 0.14; HFNCu: 1.92 ± 0.15,p < 0.05; NFLCu: 1.81 ± 0.10,p < 0.01). Fetuses of the HFLCu group had a lower heart Fe than the NFNCu group (0.56 ± 0.03 vs. 44.0 ± 3.0 μg/g,p < 0.01). These data indicate that a maternal high-fat diet can potentially aggravate the effects of Cu deficiency by further altering fetal Cu and Fe tissue stores.

Index entries

Copper deficiency high-fat diet iron gestation metallothionine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Hurley, S. L. Keen, and B. Lönnerdal, Copper in fetal and neonatal development, inBiological Roles of Copper, Ciba Fdn. Symp. 79, Excerpta Medica-Elsevier, Amsterdam, pp. 227–245 (1980).Google Scholar
  2. 2.
    P. A. Walravens, Nutritional importance of copper and zinc in neonates and infants,Clin. Chem. 26, 185–189 (1980).PubMedGoogle Scholar
  3. 3.
    J. R. Prohaska and O. A. Lukasewycz, Copper deficiency during perinatal development: effects of the immune system response of mice,J. Nutr. 119, 922–931 (1981).Google Scholar
  4. 4.
    C. N. Ong, S. E. Chia, S. C. Foo, H. Y. Ong, M. Tsakok, and P. Liouw, Concentrations of heavy metals in maternal and umbilical cord blood,Biometals 6, 61–66 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    W. Wasowicz, P. Wolkanin, M. Bednarski, J. Gromadzinska, M. Sklodowska, and K. Grzybowska, Plasma trace element (Se, Zn, Cu) concentrations in maternal and umbilical cord blood in Poland,Biol. Trace Element Res. 38, 205–215 (1993).CrossRefGoogle Scholar
  6. 6.
    P. Yasodhara, L. A. Ramarajn, and L. Raman, Trace minerals in pregnancy. 1. Copper and zinc,Nutr. Res. 11, 15–21 (1991).CrossRefGoogle Scholar
  7. 7.
    T. M. Allen, A. Manoli, and R. L. Lamont, Skeletal changes associated with copper deficiency,Clin. Orthop. 148, 206–210 (1982).Google Scholar
  8. 8.
    C. R. Paterson and J. Burns, Copper deficiency in infancy,J. Clin. Biochem. Nutr. 4, 175–190 (1980).Google Scholar
  9. 9.
    R. G. Hopkins and M. L. Failla, Chronic intake of a marginally low copper diet impairs in vitro activities of lymphocytes and neutrophils from male rats despite minimum impact on conventional indicators of copper status,J. Nutr. 125, 2658–2668 (1995).PubMedGoogle Scholar
  10. 10.
    R. A. Wapnir, I. Gyasi, R. G. Harper, J. Moyse, and S. Teichberg, Placental copper transport in the rat. II: Effect of maternal copper deficiency,Placenta 17, 479–486 (1996).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Barone, O. Ebesh, R. G. Harper, and R. A. Wapnir, Placental copper transport in rats: effects of elevated dietary zinc on fetal copper, iron and metallothionein,J. Nutr. 128, 1037–1042 (1998).PubMedGoogle Scholar
  12. 12.
    R. A. Wapnir and M. C. Sia, Copper intestinal absorption in the rat: effect of free fatty acids and triglycerides,Proc. Soc. Exp. Biol. Med. 211, 381–386 (1996).PubMedGoogle Scholar
  13. 13.
    A. A. Al-Othman, F. Rosenstein, and K. Y. Lei, Copper deficiency increase in vivo hepatic synthesis of fatty acids, triacylglycerols, and phospholipids in rats,Proc. Soc. Exp. Biol. Med. 204, 97–103 (1993).PubMedGoogle Scholar
  14. 14.
    M. Fields and C. G. Lewis, Hepatic iron overload may contribute to hypertriglyceridemia and hypercholesterolemia in copper-deficient rats,Metabolism 46, 377–381 (1997).PubMedCrossRefGoogle Scholar
  15. 15.
    E. D. Harris, The iron-copper connection: the link to ceruloplasmin grows stronger,Nutr. Rev. 53, 170–173 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    P. G. Reeves, F. H. Nielsen, and G. C. Gahey, Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad-hoc writing committee on the reformulation of the AIN-76A rodent diet,J. Nutr. 123, 1939–1951 (1993).PubMedGoogle Scholar
  17. 17.
    S. Onosaka and M. G. Cherian, Comparison of metallothionein determination by polarographic and cadmium saturation methods,Toxicol. Appl. Pharmacol. 63, 270–274 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    J. A. Knight, S. Anderson, and J. M. Rawle, Clinical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids,Clin. Chem. 53, 89–91 (1972).Google Scholar
  19. 19.
    I. E. Buchan,Arcus® Pro-Stat v. 3–11. Medical Computing, Aughton, UK.Google Scholar
  20. 20.
    J. H. Zar,Biostatistical Analysis, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ (1984).Google Scholar
  21. 21.
    L. E. Klevay and J. T. Saari, Comparative responses of rats to different copper intakes and modes of supplementation,Proc. Soc. Exp. Biol. Med. 203, 214–220 (1993).PubMedGoogle Scholar
  22. 22.
    M. A. Shaw, K. M. Rasmussen, and T. R. Myers, Consumption of a high fat diet impairs reproductive performance in Sprague-Dawley rats,J. Nutr. 127, 64–69 (1997).PubMedGoogle Scholar
  23. 23.
    A. A. Nanji, C. L. Mendenhall, and S. W. French, Beef fat prevents alcoholic liver disease in the rat,Alcohol Clin. Exp. Res. 13, 15–19 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Jalili, D. M. Medeiros, and R. E. C. Wildman, Aspects of cardiomyopathy are exacerbated by elevated dietary fat in copper-restricted rats,J. Nutr. 126, 807–816 (1996).PubMedGoogle Scholar
  25. 25.
    N. C. Haave, L. J. Nicole, and S. M. Innis, Effect of dietary fat content and composition during pregnancy on fetal hepatic HMG CoA reductase activities and lipids in rats,J. Nutr. 120, 539–546 (1990).PubMedGoogle Scholar
  26. 26.
    D. B. Hausman, R. W. Seerley and R. J. Martin, Effect of excess dietary fat during the third trimester of pregnancy on maternal, placental, and fetal metabolism in the pig,Biol. Neonate 59, 257–267 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    P. E. Johnson, C. Lukaski, and E. D. Korynta, Effects of stearic acid and beef tallow on iron utilization by the rat,Proc. Soc. Exp. Biol. Med. 200, 480–486 (1992).PubMedGoogle Scholar
  28. 28.
    H. N. Munro, S. J. Pilistine, and M. E. Fant, The placenta in nutrition,Annu. Rev. Nutr. 3, 97–124 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    W. Slikker, Jr. and R. K. Miller, Placental metabolism and transfer. Role in developmental toxicology, inDevelopmental Toxicology, 2nd ed., C. A. Kimmel and J. Buelke-Sam, eds., Raven, New York, pp. 245–283 (1994).Google Scholar
  30. 30.
    M. Fields, M. D. Lure, and C. G. Lewis, Effect of saturated versus unsaturated fat on the pathogenesis of copper deficiency in rats,J. Nutr. Biochem. 7, 246–251 (1996).CrossRefGoogle Scholar
  31. 31.
    S. M. Innis, Essential dietary lipids, inPresent Knowledge in Nutrition, 7th ed., E. E. Zigler and L. J. Filer, Jr, eds., ILSI, Washington, DC, pp. 58–66 (1996).Google Scholar
  32. 32.
    R. A. Wapnir and G. Devas, Copper deficiency: interaction with high-fructose and high-fat diets in rats,Am. J. Clin. Nutr. 61, 105–110 (1995).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Osama Ebesh
    • 1
  • Anthony Barone
    • 1
  • Rita G. Harper
    • 1
  • Raul A. Wapnir
    • 1
  1. 1.Department of Pediatrics, Division of Perinatal MedicineNorth Shore University Hospital-New York University School of MedicineManhasset

Personalised recommendations