Biological Trace Element Research

, Volume 38, Issue 2, pp 165–203 | Cite as

Effects of cesium on cellular systems

  • Aditi Ghosh
  • Archana Sharma
  • Geeta Talukder


Cesium Biological Trace Element Research Rubidium Monovalent Cation Caesium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. Davis, E. Murphy, and K. E. London, Uptake of cesium ions by human erythrocytes and perfused rat heart: A cesium-133 NMR study,Biochemistry,May 17 3547–3551 (1988).Google Scholar
  2. 2.
    B. V. R. Sastry and C. T. Spalding,Toxicol. Appl. Pharmacol. 12 141–155 (1968).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Nishita, P. Taylor, G. V. Alexander, and K. H. Larson, Uptake of radioactive fission products by plants, inRadioactive Fallouts, Soil, Plants, Food, Man, E. B. Fowler, ed., Elsevier, New York, 1965.Google Scholar
  4. 4.
    P. Misaelides, C. Sikalidis, R. Tsitouridou, and C. Alexiades, Distribution of fission products from dust samples from the region of Thessaloniki, Greece, after the Chernobyl (USSR) nuclear accident,Environ. Pollut. 47, 1–8 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    L. B. Beentjes and J. H. Duisings, Radioactive contamination in Nijmegen (The Netherlands) rainwater after the Chernobyl (USSR) accident.Sci. Total Environ. 64 253–258 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Gilbey, S. Bradley, and D. E. Walling, The deposition of cesium—137 on grassland at a site in South-West England, UK following the Chernobyl accident,Grass Forage Sci. 42 439–442 (1987).CrossRefGoogle Scholar
  7. 7.
    T. W. Kuyper, Radioactive cesium in fungi,Coolia 30, 8–12 (1987).Google Scholar
  8. 8.
    G. Dietl and D. Breitin, Radioactive cesium in mushrooms from Schwaebisch Gmeund area, West Germany,Z. Mykol. 54, 109–112 (1988).Google Scholar
  9. 9.
    Anonymous, Follow-up of cesium levels following the Chernobyl accident,Radioprotection 22 309–324 (1987).Google Scholar
  10. 10.
    L. B. Beentjes, W. C. Buijs, F. H. Cortens, and J. H. Duijsings, Radioactive contamination of Kiev (USSR) vacationers after the Chernobyl accident; Biological half-life of cesium,Nucl. Med. Biol. 15 171–176 (1988).Google Scholar
  11. 11.
    L. Stenke, B. Axeisson, M. Ekman, S. Larsson, and P. Raizenstein, Radioactive iodine and cesium in travellers to different parts of Europe after the Chernobyl accident (USSR),Acta Oncol. 26, 207–210 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    D. G. Bertrand and D. Bertrand, The presence and content of cesium in arable soils,Compt. Rend Acad. Sci. 229 533–535 (1949).Google Scholar
  13. 13.
    J. Pelîsek, The occurrence of lithium, rubidium and cesium in soils of Moravia,Sbor. Ceske. Akad. Zem. 15 402–405 (1940).Google Scholar
  14. 14.
    A. Wallace, E. M. Romney, and R. A. Wood, The role of stable cesium on plant uptake of cesium-137,Soil Sci. 134 71–75 (1982).Google Scholar
  15. 15.
    O. Andreae, Changing geochemical cycles, inChanging metal cycles and human health, J. O. Nriagu, (ed.), Dahlem. Konferenzen, Springer-Verlag, Berlin, pp. 359–373 (1985).Google Scholar
  16. 16.
    C. J. Warren and M. J. Dudas, Leaching behaviour of selected trace elements in chemically weathered alkaline fly ash.Sci. Total Environ. 76 229–246 (1988).CrossRefGoogle Scholar
  17. 17.
    Z. A. Khan, S. Brat, and B. M. Misra, Interaction of cesium and strontium with two Indian loams,J Indian Inst. Sci. 689 411–418, (1988).Google Scholar
  18. 18.
    W. D. Ehmann, Prevalence of the elements,The encyclopedia of the chemical elements, R. Hampel, ed. New York, 1956.Google Scholar
  19. 19.
    T. R. Folsom, C. Feldmann, and T. C. Rains, Variation of cesium in the ocean,Science 144 538–539, (1964).PubMedCrossRefGoogle Scholar
  20. 20.
    T. R. Folsom, N. Hansen, G. J. Parks, Jr. and W. E. Weitz, Jr., Precise measurements of cesium in the ocean by flame emission spectrometry,Appl. Spectrosc. 28, 345–350, (1974).CrossRefGoogle Scholar
  21. 21.
    P. Bermejo-Barrera, E. Beceiro-Gonzalez, A. Berme-Jo-Barreva, and F. Bermejo-Martinez, Determination of cesium in mineral and thermal water by electrothermal atomic absorption spectrophotometry,Microchem. J. 40 103–108 (1989).CrossRefGoogle Scholar
  22. 22.
    T. R. Dittrich and C. R. Cothern, Analysis of trace metal particulates in atmospheric samples using x-ray fluorescence,J. Air Pollut. Control Assoc. 21 716–719, (1971).Google Scholar
  23. 23.
    A. Wallace, E. M. Romney, R. A. Wood, and G. V. Alexander, Influence of potassium on uptake and distribution of cesium in bush beans,J. Plant Nutr. 6 397–403, (1983).Google Scholar
  24. 24.
    Y. Ishikawa, J. Misonoo, and Y. Tateda, Interspecific comparison of concentrations of some stable elements in algae of the family Sargassaceae, O (U 86012) 1–13, (1987).Google Scholar
  25. 25.
    R. Seeger and P. Schwein-Shaut, Occurrence of cesium in higher fungi,Sci. Total Environ.,19 253–276, (1981).CrossRefGoogle Scholar
  26. 26.
    G. M. Roomans and L. A. Seveus, Subcellular localization of diffusible ions in the yeastSaccaromyces cerevisiae: Quantitative microprobe analysis of thin freeze-dried sections,J. Cell Sci. 21 119–127 (1976).PubMedGoogle Scholar
  27. 27.
    R. R. Becker, A. Veglia, and E. R. Schmid, Determination of trace elements in feeding stuffs of a mine district by instrumental neutron activation analysis,Budenkultur. 26 312–320, (1975).Google Scholar
  28. 28.
    D. K. Teherani, Trace elements analysis in rice,J. Radioanal. Nucl. Chem. 117 133–144, (1987).CrossRefGoogle Scholar
  29. 29.
    M. Gabrashanska and A. Damyanova, Comparative investigations of the mineral content of helminths (Fasciola hepatica, Moniezia expansa, Ascaridia galli,Paramphistomum sp.),Khelmintologiya,24 12–19, (1987).Google Scholar
  30. 30.
    A. Damyanova and M. Gabrashanska, Mineral composition of helminthes and of their host tissues:Fasciola hepatica L, 1758 and itssues ofBon taurus, Khelmintologiya 26 3–9, (1988).Google Scholar
  31. 31.
    M. Gabrashanska, I. Kanev, and A. Damyanova, Mineral composition of four parasite species of class trematada and their fresh-water snail hosts,6th International Trace element symposium M. Anke, W. Baumann, H. Braunlich, C. Bruckner, B. Groppel and N. Gruin, eas. Leipzig, 1989.Google Scholar
  32. 32.
    A. J. Ince, Some elements and their relationships inAscaris suum, Int. J. Parasitol. 6 127–128, (1976).PubMedCrossRefGoogle Scholar
  33. 33.
    V. P. Nesterov and I. A. Skul'skii, Comparative study of the distribution of lithium, sodium, potassium, rubidium and cesium,Zh. Evolyuts. Biokhim. Fiziol. 1 151–157, (1965).Google Scholar
  34. 34.
    N. Hansen, T. R. Folsom, and W. E. Weitz, Determination of alkali metals in blood from north Pacific albacore,Comp. Biochem. Physiol. A. Comp. Physiol. 60 491–496, (1978).CrossRefGoogle Scholar
  35. 35.
    I. A. Skul'skii, I. V. Burovina, and V. G. Leont'ev, Peculiarities in distribution of sodium, potassium, rubidium and caesium in fresh water, migrating and marine fishes,Zh. Evol. Blokhim, Fiziol. 3 16–24, (1967).Google Scholar
  36. 36.
    Y. P. Kanevskii and D. G. Fleishman, Investigations of food relations in the ichthyocenosis of Lake Dal'nii (Kamchatka) based on rubidium and cesium concentrations in hydrobionts,Ekologiya 2, 5–8, (1971).Google Scholar
  37. 37.
    R. J. Olson and C. H. Boggs, Apex predation by yellowfin tuna (Thunnus albacares): Independent estimates from gastric evaluation and stomach concents, bioenergetics and cesium concentrations,Can. J. Fish Aquat. Sci. 43 1760–1775, (1986).CrossRefGoogle Scholar
  38. 38.
    N. Ito, H. Shimoya, Y. Kanaji, N. Iwamoto, and Y. Furukawa, Determination of elements in bovine tissues by instrumental neutron activation analysis,Radioisotopes 35 65–69, (1986).PubMedGoogle Scholar
  39. 39.
    T. Sato and T. Kato, Determination of trace elements in various organs of rats by thermal neutron activation analysis.J. Radioanal. Chem. 53 181–190, (1979).CrossRefGoogle Scholar
  40. 40.
    B. Maziere, C. Loc'w, O. Stulzart, A. Gaudry, and D. Comar,J. Radioanal. Chem. 37 617 (1977).CrossRefGoogle Scholar
  41. 41.
    D. Gawlik, D. Behne, D. Kraft, and G. Offermann, The influence of renal insufficiency on caesium metabolism in man and rat (with a note on some biological standard materials).J. Trace Elem. Electrolytes Health Dis. 3 43–50, (1989).PubMedGoogle Scholar
  42. 42.
    M. Decowski and K. Malwinska, Affinity of bovine tissues and to cesium,Bull. Vet. Inst. Pulawy. 11 137–140, (1969).Google Scholar
  43. 43.
    J. Versieck, J. Hoste, F. Barbier, H. Michels, and J. Derudder, Simultaneous determination of iron, zinc, selenium, rubidium and cesium in serum and packed blood cells by neutron activation analysis.Clin. Chem. 23 1301–1305, (1977).PubMedGoogle Scholar
  44. 44.
    K. Kasperek, G. V. Iyengar, J. Kiem, H. Borberg, and L. Feinendegen, Elemental composition of platelets: 3. Determination of silver, gold, cadmium, cobalt, chromium, cesium, molybdenum, rubidium, antimony and selenium in normal human platelets by neutron activation analysis.Clin. Chem. 25, 711–715, (1979).PubMedGoogle Scholar
  45. 45.
    G. E. Harrison, A. Sutton, K. B. Edwards, and H. Shepherd, Concentrations of radioactive and stable caesium in bone and soft tissues.Brit. Jour. Radiol. 36 745–748, (1963).Google Scholar
  46. 46.
    J. Rundo, A survey of the metabolism of caesium in man, in:The metabolism of biologically important radionuclides, 1963,Brit. Journ. Radiol. 37 108–114, (1964).Google Scholar
  47. 47.
    L. Lian-qing and H. Wen, Determination of trace elements in human bone in the Beijing (China) area by neutron activation analysis,Chin. J. Prev. Med. 22 98–100, (1988).Google Scholar
  48. 48.
    F. J. Cumming, J. J. Faroy, and M. H. Briggs, Trace element in human milk,Obstet. Gynecol. 62 506–608, (1983).PubMedGoogle Scholar
  49. 49.
    M. Persigehl, H. Schicha, K. Kasperek, and H. J. Klein, Trace element concentration in human organs in dependence of age,Beitr. Pathol. 161 209–220, (1977).PubMedGoogle Scholar
  50. 50.
    W. R. Markesbery, W. D. Ehmann, M. Alauddin, and T. I. M. Hossain, Brain trace element concentrations in aging,Neurobiol. Aging 5 19–28, (1984).PubMedCrossRefGoogle Scholar
  51. 51.
    F. M. Corrigan, G. P. Reynolds, and N. I. Ward, Multi-element analysis of the frontal cortex, temporal cortex and basal ganglia in schizophrenia,Neurobiol. Aging 7 1–7 (1990).Google Scholar
  52. 52.
    W. D. Ehmann, W. R. Markesbury, M. Alauddin, T. I. M. Hossain and E. H. Brubaker, Brain trace element in Alzheimer's disease,Neurotoxicology 7 197–206 (1986).Google Scholar
  53. 53.
    C. M. Thompson, W. R. Markesbery, W. O. Ehmann, Y. X. Mao, and D. E. Vance, Regional brain trace-element studies in Alzheimer's disease,Neurotoxicology 9 1–8 (1988).PubMedGoogle Scholar
  54. 54.
    S. A. Ali, M. Paet, and N. I. Ward, Blood levels of vanadium, cesium and other elements in depressive patients,J. Aff. Disord. 9, 187–191 (1985).CrossRefGoogle Scholar
  55. 55.
    R. Kumar, I. Wright, G. J. Naylor and N. Ward, Cesium levels in manic depressive psychosis,J. Aff. Disord. 17 17–20 (1988).CrossRefGoogle Scholar
  56. 56.
    R. Cornelis, L. Mees, S. Ringoir, and J. Hoste, Serum and red blood cell in zinc, selenium, cesium and rubidium in dialysis patients,Miner. Electrolyte Metab. 2 88–93 (1979).Google Scholar
  57. 57.
    G. D. Theodossiadis, T. C. Kouris, and E. M. Baikaktari-Kouri, Determination of chromium and cesium in human cataractous lenses,Acta Ophthalmol. 60 788–794 (1982).Google Scholar
  58. 58.
    L. A. Il'in, V. Yu. Bekreneva, V. P. Dolganov, D. P. Arkhipov, N. P. Teryukova, V. F. Tryufanov, and D. V. Shestov, Trace elements and thin connection with blood cell lipids and ischemic heart disease in a group of 40–59 year old males living in Leningrad (USSR),Kardiologiya 22 35–39 (1982).PubMedGoogle Scholar
  59. 59.
    D. D. Zdankiewcz and J. L. Fasching, Analysis of whole blood by neutron activation: A search for a biochemical indicator of neoplasia,Clin. Chem. 22 1361–1365 (1976).Google Scholar
  60. 60.
    P. Taylor, J. Vennart, and D. M. Taylor, Retention and excretion of caesium-137 by man,Phys. Med. and Biol. 7 157–165 (1962).CrossRefGoogle Scholar
  61. 61.
    L. G. Bengtsson, Y. Naversten, and K. G. Svensson, Material and infantile metabolism of cesium, in:Assessment of radioactivity in man, Proceedings of the symposium on the assessment of radioactive body burdens in man, The International Atomic Energy, ILO, and WHO, Hiedelberg, 1964.Google Scholar
  62. 62.
    U. Boikat, A. Fink, and J. Bleck-Neuhans, Cesium and coblat transfer from soil to vegetation on permanent pasture,Radiat. Environ. Biophys. 24 287–301 (1985).PubMedCrossRefGoogle Scholar
  63. 63.
    I. Bundesminister, Statusbericht uber den Transfer von Radionukliden, Bonn, 1980.Google Scholar
  64. 64.
    E. M. Romney, A. Wallace, R. K. Schulz, J. Kinnear, and R. A. Wood, Plant uptake of237Np,239,240Pu,241Am and244Cm from solis representing major food production areas of the United States,Soil Sci. 132 40–49 (1981).Google Scholar
  65. 65.
    R. K. Schulz, Soil chemistry of radionuclides,Health Phys. 11 1317–1324 (1965).PubMedGoogle Scholar
  66. 66.
    T. J. D'Souza, R. Kirchmann, and J. J. Lehr, Distribution of radiostrontium and radiocesium in the organic and mineral fraction of pasture soils and their subsequent transfer to grasses,IAEA-Symposium on isotopes and radiation in soil-plant relationship including forestry, Wein, 1972.Google Scholar
  67. 67.
    H. Gedhardt, L. Giani, and V. Rosemann, Bodenkundliche Kennzeichung und Nuklidaus-tauscheigenschaften von Marschboden, Sachbericht zum BMI-Forschungsvorhaben,St. Sch.,702e (1981).Google Scholar
  68. 68.
    I. V. Gulyakin and E. V. Yudintseva, Effect of Organic matter on the accumulation of fission products in crops,Compost Sci. 2 9–12 (1962).Google Scholar
  69. 69.
    K. B. Mistry, B. M. Bhujbal, and T. J. D'Souza, Influence of agronomic particles on uptake of fission products by crops from soil of regions adjoining nuclear installations in India,IAEA-Symposium: Environmental behavior of radionuclides released in the nuclear industry, Wien, 1973.Google Scholar
  70. 70.
    M. Tahir and J. W. B. Stewart, Effect of organic matter incorporation into soils on cesium-137 uptake by wheat plants,Radiat. Bot. 15 323–328, (1975).CrossRefGoogle Scholar
  71. 71.
    J. Handle and W. Kuhn, Determination of transfer coefficients for Cs-137 and Co-60 in a slime-soil-grassland ecosystem,Health Phys. 703–705, (1980).Google Scholar
  72. 72.
    J. F. Cline, Aging effects of the availability of strontium and cesium to plants,Health Phys. 41 293–296, (1981).PubMedGoogle Scholar
  73. 73.
    J. Stary, K. Kratzer, and J. Prasilova, Cumulation of alkali earths and alkali metals on algae,Int. J. Environ. Anal. Chem. 14 161–168, (1983).CrossRefGoogle Scholar
  74. 74.
    D. P. Marchyulene, A radiochemoecological study of hydrophytes in Lithuanian fresh water basin,27 813–819, (1987).Google Scholar
  75. 75.
    W. J. G. Derks and G. W. F. H. Borst-Pauwels, Apparent 3-site kinetics of cesium ion uptake by yeast,Physiol. Plant 46 241–246, (1979).CrossRefGoogle Scholar
  76. 76.
    P. Eckl, W. Hofmann, and R. R. Tuerk, Uptake of natural and man-made radionuclides by lichens and mushrooms,Radiat. Environ. Biophys. 25 43–54, (1986).PubMedCrossRefGoogle Scholar
  77. 77.
    K. M. Ellis and J. N. Smith, Dynamic model for radionuclide uptake in lichen,J. Environ. Radioacts. 5 185–208, (1987).CrossRefGoogle Scholar
  78. 78.
    A. R. Memom, T. Kuboi, K. Fujii, S. Ito, and M. Yatazawa, Taxonomic character of plant species in absorbing and accumulating alkali and alkali earth metals grown in temperate forest of Japan,Plant Soil 70 367–390, (1983).CrossRefGoogle Scholar
  79. 79.
    E. Levi, The influence of accompanying cations on the foliar uptake of sodium, potassium, rubidium and cesium,Physiol. Plant 23 871–877, (1970).CrossRefGoogle Scholar
  80. 80.
    A. Wallace, M. Romney, R. A. Wood, and G. V. Alexander, Influence of potassium uptake and distribution of cesium in bush beans (Phaseolus vulgaris cultivar improved tendergreen),J. Plant. Nutr. 6 397–404, (1983).Google Scholar
  81. 81.
    J. C. Mcfarlane and W. L. Berry, Cation penetration through isolated leaf cuticles,Plant Physiol. 53 723–727, (1974).PubMedGoogle Scholar
  82. 82.
    H. Th. Wolterbeek and M. DeBruin, Xylem and phloem import of Na+, K+, Rb+, Cs+ and Sb(SO4)2 in tomato fruits: Differential contributions from stem and leaf,J. Exp. Bot. 37 928–939, (1986).CrossRefGoogle Scholar
  83. 83.
    H. Th. Wolterbeek, J. Van Luipen, and M. DeBruin, Actual escape area and lateral escape from the xylem of the alkali ions Na+, K+, Rb+ and Cs+ in tomato,Physiol. Plant 65 467–475, (1985).CrossRefGoogle Scholar
  84. 84.
    G. Shaw and J. N. B. Bell, The kinetics of cesium absorption by roots of winter wheat and the possible consequences for the derivation of soil-to-plant-transfer factors for radiocesium,J. Environ. Radioact. 10 213–232, (1989).CrossRefGoogle Scholar
  85. 85.
    J. P. Witherspoon and G. N. Brown, Translocation of Cesium-137 from parent trees to seedlings ofLiriodendron tulipifera, Bot. Gaz. 126 181–185, (1965).CrossRefGoogle Scholar
  86. 86.
    I. A. Skul'skii, N. B. Pivovarova, and I. V. Burovina, Active and passive transport of rubidium and cesium in single neurons of the snailPlanorbarius corneus as revealed by x-ray microanalysis,Tsitologiya 29 208–213, (1987).Google Scholar
  87. 87.
    K. Zerahn, Active transport of cesium by the isolated and short-circuited midgut ofHyalophora cecropia, J. Exp. Biol. 53, 641–649 (1970).PubMedGoogle Scholar
  88. 88.
    J. L. Hayes, Detection of single and multiple race element labels in individual eggs diet rearedHiliothis virescens (Lepidoptera: Noctuidae).Ann. Entomol. Soc. Am. 82 340–345, (1989).Google Scholar
  89. 89.
    D. A. Crossley, Radioisotopes measurement of food consumption by a leaf bettle species,Chrysomela knabi Brown,Ecology 47 1–8, (1966).CrossRefGoogle Scholar
  90. 90.
    Y. P. Kanevskii and D. G. Fleishman, Comparitive investigations of the accumulation of rubidium, cesium and potassium by roach and perch under natural conditions,Ekologiya 2 10–14, (1971).Google Scholar
  91. 91.
    L. Edelmann, Preferential localized uptake of potassium and cesium over sodium in the A-band of fresh dried embedded muscle section: Detection by x-ray microanalyses and laser microprobe analysis,Physiol. Chem. Phys. 12 501–514, (1981).Google Scholar
  92. 92.
    L. Edelmann, Potassium binding sites in muscle: Electron microscopic visualization of potassium, rubidium and cesium in freeze-dried preparations and autoradiography at liquid nitrogen, temperature using rubidium-86 and cesium-134,Histochemistry 67, 233–242, (1986).CrossRefGoogle Scholar
  93. 93.
    L. Edelmann, Electron probe x-ray microanalysis of potassium, rubidium, cesium and titanium in cryosections of straited muscles,Physiol. Chem. Phys. Med. Nmr. 15 337–344, (1983).PubMedGoogle Scholar
  94. 94.
    R. P. Kernan, Accumulation of caesium and rubidiumin vivo by red and white muscles of the rat,J. Physiol. 204 195–205, (1969).PubMedGoogle Scholar
  95. 95.
    R. P. Kernan, Studies of caesium uptake by rat soleus and vastus lateralis musclesin vivo and its efflux rate relative to potassiumin vitro, Pfluegers Arch. Eur. J. Physiol. 333 95–110, (1972).CrossRefGoogle Scholar
  96. 96.
    Z. Gregus and C. D. Klaassen, Disposition of metals in rats: A comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals,Tox. Appl. Pharmacol 85 24–38, (1986).CrossRefGoogle Scholar
  97. 97.
    F. S. Messiha, Distribution and retention of exogenously administered alkali metal ion in the mouse brain,Arch. Int. Pharmacodyn. Ther. 219 87–96, (1976).PubMedGoogle Scholar
  98. 98.
    Y. Arimatsu and K. Ito, Active transport of cesium into brain slices,Sci. Pap. Coll. Gen. Educ. Univ. Tokyo Biol. 19 225–237, (1969).Google Scholar
  99. 99.
    J. Van Don Hoek, Cesium metabolism in sheep and the influence of orally ingested bentonite on cesium absorption and metabolism,Z. Tierphysiol. Tierernaehr. Futter. Mittelkd. 37 315–321, (1976).Google Scholar
  100. 100.
    I. V. Burovina, I. A. Skul'skii, and D. G. Fleishman, Interrelationship between the contents of stable cesium, cesium137 and other alkaline elements in the brain and muscles of the reindeer,Zh. Evol. Bio. Khim. Fiziol. 3, 281–286, (1967).Google Scholar
  101. 101.
    R. Steinwender, L. Lettner, L. Gruber, G. Uray, and A. Kapp, Experimental studies on the relationship between cesium concentration and yield in the milk of dairy cows,Bodenkultur. 39 269–280, (1988).Google Scholar
  102. 102.
    W. Moore, Absorption of caesium 137 from the gastrointestinal tract of the rat,Internatl. J. Radiation Biol. 5 247–254, (1962).CrossRefGoogle Scholar
  103. 103.
    J. E. Furchner and C. R. Richmond, Effect of environmental temperatures on retention of cesium-137 by mice,J. Appl. Physiol. 18 786–788, (1963).PubMedGoogle Scholar
  104. 104.
    J. E. Johnson, D. Garner, and G. M. Ward, Influence of dietary potassium, rubidium, or sodium on the retention time of radiocesium in rats,Proc. Soc. Exp. Biol. Med. 127 857–860, (1968).PubMedGoogle Scholar
  105. 105.
    C. E. Miller, A. J. Finkel, and N. B. Wright,137 cesium retention in mice of different ages,Proc. Soc. Exp. Biol. Med. 128 563–566, (1968).PubMedGoogle Scholar
  106. 106.
    J. E. Furchner, G. A. Trafton, and C. R. Richmond, Distribution of cesium137 after chronic exposure in dogs and mice,Proc. Soc. Exptl. Biol. Med. 116 375–378, (1964).Google Scholar
  107. 107.
    W. Moore and C. L. Comar, Foetal metabolism of caesium-137 in the rat,Internat. Jour. Radiat. Biol. 6 233–239, (1963).CrossRefGoogle Scholar
  108. 108.
    H. Wasserman, C. L. Comar, and D. N. Tapper, Influence of dietary potassium and sodium on cesium-137 retention in rats,Proc. Soc. Exptl. Biol. and Med. 133 305–307, (1963).Google Scholar
  109. 109.
    R. Krulik, I. Farska, J. Prokes, and R. Tykua, Distribution of cesium in the organism and its effect on the nucleotide metabolism enzymes,Int. Pharmacopsychiatry 15 157–165, (1980).PubMedGoogle Scholar
  110. 110.
    B. Rosoff, S. H. Cohn, and H. Spencer, I. Cesium-137 metabolism in man,Radiat. Res. 19, 634–654, (1963).CrossRefGoogle Scholar
  111. 111.
    N. Yamagata, Balance of potassium, rubidium and caesium between Japanese people and diet and assessments of their biological half-times,Nature 196 83–84, (1962).PubMedCrossRefGoogle Scholar
  112. 112.
    C. Vanoetern, R. Cornelis, and P. Verbeeck, Evaluation of trace elements in human lung tissue: III. Correspondance analysis,Sci. Total Environ. 54 237–246, (1986).CrossRefGoogle Scholar
  113. 113.
    G. Lal, N. P. S. Sidhu, I. Singh, V. K. Mittal, and H. S. Sahota, Neutron activation analysis of trace elements in human hair: Effect of dietary and environmental factors,Nucl. Med. Biol. 14 499–502, (1987).Google Scholar
  114. 114.
    G. F. Clemente, G. Ingrao, and G. P. Santaroni, Concentrations of some trace elements in human milk from Italy,Sci. Total Environ. 24 255–266, (1982).PubMedCrossRefGoogle Scholar
  115. 115.
    M. Fujita, Derivation of retention equations of cesium in human in internal organs by compartmental analysis,Health Phys. 22 125–134, (1972).PubMedGoogle Scholar
  116. 116.
    T. F. McGraw, The half-time of cesium-137 in man,Radiol. Health Data 6 711–718, (1965).Google Scholar
  117. 117.
    J. C. Skou,Acta Biochim. Biophys. 42 6–23, (1960).CrossRefGoogle Scholar
  118. 118.
    R. Whittam and M. E. Ager, Vectorial aspects of adenosine triphosphatase activity in erythrocyte membranes.J. Biochem. 93 337–348, (1964).Google Scholar
  119. 119.
    H. Bader and A. K. Sen,Acta Biochim. Biophys. 118 116–123, (1966).Google Scholar
  120. 120.
    P. F. Baker, M. P. Baustein, R. D. Keynes, J. Manil, T. I. Shaw, and R. A. Steinhardt,200 459–496, (1969).Google Scholar
  121. 121.
    L. J. Mullins,J. Biophys. 15 921–931, (1975).Google Scholar
  122. 122.
    C. J. Chang, Inorganic salts and the growth of spiroplasmas,32 861–866, (1986).Google Scholar
  123. 123.
    A. Nookt, C. L. A. M. Van Den Dries, C. W. A. Pleij, E. M. J. Jaspars and L. Bosch, Properties of turnip yellow mosaic virus in cesium chloride solutions: the formation of high density components,Virology 120 412–421, (1982).CrossRefGoogle Scholar
  124. 124.
    J. E. Mapoles, J. W. Anderegg, and R. R. Rueckert, Properties of poliovirus propagated in medium containing cesium chloride: implications for picornaviral structure,Virology 90, 103–111, (1978).PubMedCrossRefGoogle Scholar
  125. 125.
    M. Lembo, Lithium ion, Managanese (II) and cesium binding capacity of a psychrophilic microorganism developing at various temperatures,Rass. Med. Sper. 27, 759–763, (1980).Google Scholar
  126. 126.
    I. V. Myagkikh and T. V. Demidkina, Effects of monovalent cations on the catalytic and opectral properties of tyrosine phenol-lyase fromCitrobacter intermedius, Mol. Biol. 19, 671–678, (1985).Google Scholar
  127. 127.
    A. Demidkina, V. Tatyana, and I. V. Myagkikh, The activity and reaction specificity of tyrosine phenol-lyase regulated by monovalent cations,Biochimie.71, 565–572, (1989).PubMedCrossRefGoogle Scholar
  128. 128.
    F. Sgarrella, V. Mura, R. Catalani, A. Pitli, and P. L. Ipata, Preliminary characterization of adenosine deaminase (EC, fromBacillus cereus, Boll. Soc. Ital. Biol. Sper. 58, 1145–1151, (1983).Google Scholar
  129. 129.
    M. I. Lerman, Studies on the structure of ribosomes II. Stepwise dissociation of protein from ribosomes by caesium chloride and the reassembly of ribosome like particles,J. Mol. Biol. 15, 268–281, (1966).PubMedGoogle Scholar
  130. 130.
    G. Tamas, M. Szogyi, and I. Tarjan, Effect of various metal ions on the streptomycin uptake ofE. coli B cells,Acta Biochem. Biophys. Acad. Sci. Hung. 9 107–113, (1974).Google Scholar
  131. 131.
    D. Bossemeyer, A. Schloesser, and E. P. Bakker, Specific cesium transport via theEscherichia coli Kup (Trk D) potassium uptake system,J. Bacteriol. 171 2219–2221, (1989).PubMedGoogle Scholar
  132. 132.
    M. C. Neville, and G. N. Ling, Synergistic activation of-galactosidase by Na+ and Cs+,Arch. Biochem. Biophys. 118 596–610, (1967).PubMedCrossRefGoogle Scholar
  133. 133.
    A. R. Hunaiti, and P. E. Kolattukudy, Isolation and characterization of an acylcoenzyme A carboxylase from an erythromycin-producingStreptomyces erythraeus, Arch. Biochem. Biophys. 216 362–371, (1982).PubMedCrossRefGoogle Scholar
  134. 134.
    A. L. Tarasov, I. S. Zvyagintseva, and V. K. Plakunov, The effect of monovalent cations and some inhibitors on the transport of four carbon dicarboxylic acids in extreme halophilic archebacteria,Mikrobiologiya 54 869–875, (1986).Google Scholar
  135. 135.
    S. Nagata, Influence of salts and pH on the growth as well as NADH oxidase of the halotolerant bacterium A505,Arch. Microbiol. 150 302–308, (1988).CrossRefGoogle Scholar
  136. 136.
    J. Vinograd, J. Morris, N. Davidson, and W. F. Dove, The buoyant behaviour of viral and bacterial DNA in alkaline cesium chloride,Proc. Nat. Acad. Sci. USA. 49 12–17, (1963).PubMedCrossRefGoogle Scholar
  137. 137.
    J. Vinograd, R. Greenwald, and J. E. Hearst, Effect of temperature on the buoyant density of bacterial and viral DNA in cesium chloride solutions in the ultracentrifuge,Biopolymers 3 109–114, (1965).CrossRefGoogle Scholar
  138. 138.
    R. Strauss, Effects of rubidium and cesium on the growth and mineral nutrition of the characeae,Hydrobiologia 71 87–94, (1980).CrossRefGoogle Scholar
  139. 139.
    M. Tester, Blockade of potassium channels in the plasmalemma ofChara corallina, by tetraethylammonium (Tea+), Ba2+, Na+ and Cs+,J. Membr. Biol. 105 77–86, (1988).CrossRefGoogle Scholar
  140. 140.
    M. Tester, Pharmacology of potassium channels in the plasmalemma of the green algaChara corallina, J. Membr. Biol. 103 159–170, (1988).CrossRefGoogle Scholar
  141. 141.
    M. Tester, Potassium channels in the plasmalemma ofChara corallina are multi-ion pores: Voltage-dependent blockade by cesium and anomalous permeabilities,J. Membr. Biol. 105 87–94, (1988).CrossRefGoogle Scholar
  142. 142.
    V. R. Shatilov, M. A. Kasparova, and V. L. Kretovich, Effect of monovalent cations onChlorella glutamate dehydrogenase,Biokhimiya,41 1636–1640, (1976).Google Scholar
  143. 143.
    G. Lysek, and K. Schruefer, Rhythmic growth inPodospora anserina, Ber. Dtsch. Bot. Ges. 94 105–112 (1981).Google Scholar
  144. 144.
    A. Pena, and J. Ramirez, Effects of monovalent cations on derepression of phosphate transport in yeast (Saccharomyces cerevisiae),Biochem. Biophys. 855 179–185, (1986).CrossRefGoogle Scholar
  145. 145.
    O. S. Lawrence, J. J. Cooney, and G. M. Gadd, Toxocity of organotins towards the marine yeastDebaryomyces hansenii, Micro. Ecol. 17, 275–286 (1989).CrossRefGoogle Scholar
  146. 146.
    R. B. Bailey, E. D. Thompson, and L. W. Parks, Kinetic properties of S-adenosyl methionine: △ sterol methyl transferase enzyme(s) in mitochondrial 02 structures ofSaccharomyces cerevisiae, Acta Biochem. Biophys. 334 127–136 (1974).Google Scholar
  147. 147.
    N. Kurita, and M. Funabashi, Growth-inhibitory effect of fungi on alkali cations and monovalent inorganic anions and antagonism among different alkali cations,Agric. Biol. Chem. 48, 887–893 (1984).Google Scholar
  148. 148.
    M. J. Hynes, Repression of enzymes of nitrogen catabolism by methylammonium and caesium chloride in strains ofAspergillus nidulans insensitive to ammonium repression,Mol. Gen Genet. 132 147–152 (1974).PubMedGoogle Scholar
  149. 149.
    W. K. Holloman, and C. A. Dekker, Control by cesium and intermediates of the citric acid cycle of extracellular ribonuclease and other enzymes involved in the assimilation of nitrogen,Proc. Natl. Acad. Sci. USA 68 2241–2245 (1971).PubMedCrossRefGoogle Scholar
  150. 150.
    M. Kamekura, and H. Onishi, Cell-associated cations of the moderate halophileMicrococcus varians ssp.halophilus grown on media of high concentrations of lithium chloride, sodium chloride, potassium chloride, rubidium chloride or cesium chloride,Can. J. Microbiol. 28, 155–161 (1982).CrossRefGoogle Scholar
  151. 151.
    V. V. Kabanov, and N. A. Myasoedov, Toxicity of alkaline cations for tomato plants,Fiziol. Rast. 21 391–397 (1974).Google Scholar
  152. 152.
    H. A. Kordan, and F. R. Oritseje, Adverse photosensitive growth behaviour of tomato (Lycopersicon esculentum) seedlings germinated on cesium chloride,Biochem. Physiol. Pflanzen 179 717–721 (1984).Google Scholar
  153. 153.
    V. V. Kabanov, and N. A. Myasoedov, Effect of alkaline elements on the composition of nitrogen compounds in tomato leaves,Fiziol. Rast. Mosc. 21 1223–1229 (1974).Google Scholar
  154. 154.
    N. A. Myasoedov and V. V. Kabanov, Effects of chlorides of alkaline elements on ionic composition of tomato organs,21 826–832 (1974).Google Scholar
  155. 155.
    H. A. Kordan, Photosensitivity of hypocotyl hook of caesium-treated tomato seedlings,New Phytol. Plant and Soil 101 565–569 (1985).CrossRefGoogle Scholar
  156. 156.
    H. A. Kordan, Effects of alkali metal cations on root extension in germinating tomato seedlings,New Phytol. 107 145–148 (1988).Google Scholar
  157. 157.
    H. A. Kordan, Reversal of caesium inhibition of growth by potassium in hypocotyls of tomato seedlings (Lycopersicon esculentum L.)New Phytol. 107 395–401 (1987).CrossRefGoogle Scholar
  158. 158.
    M. T. Panicera, R. P. Walgenbach, and R. J. Bula, Cation radius and pH of drying agent solutions influence on alfalfa drying rates,J. Agron. 81 174–178 (1989).CrossRefGoogle Scholar
  159. 159.
    T. P. Johnson, and J. W. Thomas, Increased drying rate of cut luceine (alfalfa)Medicago sativa with alkali metal carbonate solutions,J. Sci. Food Agric. 34 534–540 (1983).CrossRefGoogle Scholar
  160. 160.
    T. Rinnan, and A. Johnsson, Effects of alkali ions on the circadian leaf movements of Oxalis regnellii,Physiol. Plant 66 139–143 (1986).CrossRefGoogle Scholar
  161. 161.
    M. Z. Iqbal, and M. A. Qadir, Determination of bromine, rubidium, cesium, scandanium and sodium in various plant leaves located in an urban park by neutron activation analysis,J. Radioanal. Nucl. Chem. 145 189–196 (1990).CrossRefGoogle Scholar
  162. 162.
    B. H. Shah, Effect of some cations on the sodium uptake in excised and intact roots of wheat, pea and cucumber,J. Sind Univ. Res. (Sci. Ser.) 4 59–68 (1971).Google Scholar
  163. 163.
    F. M. Chaudhury, Zinc absorption by wheat seedlings: Inhibition by macronutrient ions in short-term experiments and its relevance to longterm zinc nutrition,Soil Sci. Soc. Am. Proc. 36 323–327, (1972).CrossRefGoogle Scholar
  164. 164.
    P. A. Vlasyuk and M. S. Halins'a, Effects of rubidium, nickel and cesium on the enzyme activity in germinating seeds of cucumber,Doppv. Akad. Nauk. Ukr. Res. Ser. B. Heol. Heofiz. Khim. Biol. 32 949–952, (1970).Google Scholar
  165. 165.
    N. C. Nielsen and P. K. Stumpf, Activation of wheat germ acetyl CoA carboxylase by potassium and rubidium,Biochem. Biophys. Res. Common. 68 205–210, (1976).CrossRefGoogle Scholar
  166. 166.
    P. A. Vlasyuk, E. A. Rubanyuk, M. S. Galinskaya, and O. F. Cherkavskii, The effect of presowing enrichment with cesium, nickel and rubidium on the metabolism of sprouting winter wheat and corn seeds,Fiziol. Biokhim. Kul't. Rast. 2 160–167, (1970).Google Scholar
  167. 167.
    H. Marschner and I. Gunther, Changes in the fine structures of the chloroplasts in barley shoots under the action of cesium,Flora. Allg. Bot. Zeitung (Jena) 156 684–696, (1966).Google Scholar
  168. 168.
    H. Marschner, Chlorophyll formation and leaf injury under the influence of cesium ions,Flora Allg. Bot. Zeitung (Jena) 154 30–51, (1964).Google Scholar
  169. 169.
    H. Marschner, Cesium induced accumulation of porphylin and protochlors phyllide in barley shoots,Flora oder. Allg. Bot. Leigung 155 558–572, (1965).Google Scholar
  170. 170.
    R. M. Rotfarb, V. L. Kalyer, and I. I. Paromchik, The mechanism of the distribution of chlorophyll biosynthesis induced by cesium,Yestsi. Akad. Navuk. Byelarus. Ssr. Syer, Biyal, Navuk. 3 114–115, (1970).Google Scholar
  171. 171.
    N. Murata, Effects of monovalent cations on light energy distribution between two pigment systems of photosynthesis in isolated spinach chloroplasts,Acta Biochem. Biophys. 226 422–432, (1971).CrossRefGoogle Scholar
  172. 172.
    D. L. Cronkite and M. Burg, Ion regulation in potassium sensitive mutants ofParamecium tetraaurelia, J. Cell Physiol. 110 271–276, (1982).PubMedCrossRefGoogle Scholar
  173. 173.
    P. R. Brink and S. Fan, Patch Clamp recordings from membranes which contain gap junction channels.J. Biophys. 56 579–594, (1984).Google Scholar
  174. 174.
    P. S. Taylor, Selectivity and patch measurements of A-current channels inHelix aspersa neurons,J. Physiol. (London),388 437–448, (1987).Google Scholar
  175. 175.
    D. Junge, External potassium ions increases rate of opening of outward current channels in snail (Helix aspersa) neurons,Pfluegers Arch. Eur. J. Physiol. 394 94–96, (1982).CrossRefGoogle Scholar
  176. 176.
    K. S. Kits and P. N. R. Usherwood, Ion selectivity of single glutamategated channels in locust skeletal muscle,J. Exp. Biol. 138 499–516, (1988).Google Scholar
  177. 177.
    I. S. Magura, Physicochemical properties of inactivated potassium channels in the somatic membrane,Fiziol. Zh. (Kiev) 32 656–664, (1986).Google Scholar
  178. 178.
    L. Goldman, Internal cesium and the sodium inactivation gate inMyxicola giant axons,J. Biophys. 50 231–238, (1986).Google Scholar
  179. 179.
    G. R. Broun, V. I. Gouardousrii, and V. L. Cherepnov, Action of calcium and potassium channels blockers on changes in transepithelial potential and spike responses of Lorenzinian ampullae in the Black sea skate (Raja clavata)Neir ofiziologiya 17 652–660, (1985).Google Scholar
  180. 180.
    S. L. Cowan, The action of potassium and other ions on the injury potential and action current inMaia nerve,Proc. Roy. Soc. (London) 793 216–260.Google Scholar
  181. 181.
    J. R. Clay and F. Shlesinger, Effects of external cesium and rubidium on outward potassium currents in squid (Loligo pealei) axons,J. Biophys. 42 43–54, (1983).Google Scholar
  182. 182.
    J. M. Lignon, Toxic permeabilities of the isolated gill cuticle of the shoreCarcinus maenas J. Exp. Biol. 131 159–174, (1987).Google Scholar
  183. 183.
    K. Herrmann, Larval development and metamorphosis ofPhronis psammophila (Phoronida, Tentaculata)Helgol. Wiss. Meere=Sunthers 32 550–581, (1979).CrossRefGoogle Scholar
  184. 184.
    J. I. Moss and R. A. Vansteen Wyk, Marking pink bollworm (Pectinophora gossypietla), (Lepidoptera: Gelechiidae) with cesium,Environ. Entomol. 11 1264–1268, (1983).Google Scholar
  185. 185.
    J. M. Quayle, N. B. Standen, and P. R. Stanfield, The voltage-dependent block of ATP-sensitive potassium channels of frog skeletal muscle by cesium and barrium ions,J. Physiol. (London) 405 677–698., (1988).Google Scholar
  186. 186.
    G. Champigny and J. Lenfant, Block and activation of the hyperpolarization-activated inward current by barium and cesium in frog sinus venosusPfluegers. Arch. Eur. J. Physiol. 407 684–690, (1986).CrossRefGoogle Scholar
  187. 187.
    G. N. Ling, Thallium and cesium in muscle cells compete for the adsorption sites normally occupied by K+ Physiol. Chem. Phys. 9 217–226, (1977).PubMedGoogle Scholar
  188. 188.
    A. Taupignon, M. Sauvignon, and J. Lenfant, The effect of external potassium on the blockade of the inward-going rectification by cesium ions in the frog atrial trabeculae,J. Physiol. 78 803–808, (1984).Google Scholar
  189. 189.
    L. A. Beauge, The influence of external caesium ions on potassium efflux in frog skeletal muscle.J. Physiol. 228 1–11, (1973).PubMedGoogle Scholar
  190. 190.
    L. A. Beauge and R. A. Slodin, Transport of caesium in frog muscle,J. Physiol. 194 104–123, (1968).Google Scholar
  191. 191.
    B. L. Ginsborg, The effect of caesium ions on neuromuscular transmission in the frog,Quart. J. Exp. Physiol. Cog. Med. Sci. 53 162–169, (1968).Google Scholar
  192. 192.
    Y. Takikawa, Effects of cesium ions on the frequency of miniature end-plate potentials at the frog neuromuscular junction.Jpn. J. Physiol. 39 75–86, (1989).PubMedGoogle Scholar
  193. 193.
    M. V. Ermakova, Seasonal effect of some trace elements on osmotic fragility of erythrocytes in the frogRana temporavia, Zn. Evol. Bio. Khim. Fizol. 6 623–626, (1970).Google Scholar
  194. 194.
    H. Jentgens, Die wirkung von Rb, Cs, NHy und Li-salzen auf der Froshherz,Pflügers Arch. Ges. Physiol. 238 555–566, (1937).CrossRefGoogle Scholar
  195. 195.
    I. Dewolf and W. Van Driessche, Current-voltage relations of cesium-inhibited potassium currents through the apical membrane of frog skin,Pfluegers Arch. Eur. J. Physiol. 413 111–117, (1988).CrossRefGoogle Scholar
  196. 196.
    A. Portella, Potassium and cesium effects on sodium efflux and oxygen consumptions of muscle cells,Acta Biochim. Biophys. 109, 495–502, (1965).CrossRefGoogle Scholar
  197. 197.
    D. D. Bustuoabad and A. Pisano, Comparative study of the monovalent cations on development ofBufo arenarum eggs,Acta Embryol. Exp. 0 121–140, (1979).Google Scholar
  198. 198.
    A. Roth, Sensitivity of catfish (Kryptopterus sp) electroreceptors: Dependence on freshwater ions and skin potential,J. Comp. Physiol. A. Sens. Neural. Behav. Physiol. 147 329–338, (1982).CrossRefGoogle Scholar
  199. 199.
    T. Kawamura and S. Yamashita, Chemical sensitivity of lateral line organs in the goby,Gobius giurinus, Comp. Biochem. Physiol. A. Comp. Physiol. 74 253–258, (1983).CrossRefGoogle Scholar
  200. 200.
    M. Guerin and G. Wallon, Effect of 2,4-dinitrophenol and ouabain on the ability of cesium ions to substitute for intracellular potassium ions in isolated and perfused turtle heart,J. Physiol. (Paris) 70 467–477, (1975).Google Scholar
  201. 201.
    T. M. Dwyer and J. M. Farley, Permeability properties of chick myotube acetylcholine activated channels,J. Biophys. 45, 529–540, (1984).Google Scholar
  202. 202.
    K. W. Cochran, J. Doull, M. Mazur, and K. P. Dubois, Acute toxicity of zirconium, columbium, strontium, lanthanum, cesium, tantalum and yttrium,Arch. Industr. Hugh. Occup. Med. 1 637–650, (1950).Google Scholar
  203. 203.
    G. T. Johnson, T. R. Lewis, and W. D. Wagner, Acute toxicity of cesium and rubidium compounds,Toxicol. Appl. Pharmacol. 32 239–245, (1975).PubMedCrossRefGoogle Scholar
  204. 204.
    B. Eichelman, E. Seagraves, and J. Barchas, Alkali metal cations: Effect on isolation-induced aggression in the mouse,Pharmacol. Biochem. Behav. 7 407–410, (1977).PubMedCrossRefGoogle Scholar
  205. 205.
    F. S. Messiha, Cesium and rubidium salts: Effects on voluntary intake of ethanol by the rat,Pharmacol. Biochem. Behav. 9 647–652, (1978).PubMedCrossRefGoogle Scholar
  206. 206.
    M. M. Bruk, The problem of the acute toxicity of cesium salts,Pharmacol. Toxicol. 48 200–205, (1964).Google Scholar
  207. 207.
    M. M. Bruk, Tolerance to and the cumulative properties of salts of stable cesium,(TK) Khar'kov. Med. Inst. 67 22–23, (1966).Google Scholar
  208. 208.
    M. M. Bruk, An experimental study of the circulatory action of stable cesium isotope compounds, Sb. Nauch. Tr. Khar'kov. Med. Inst.87 106–112, (1969).Google Scholar
  209. 209.
    N. Yu. Tarasenko and E. P. Lemesheveskaya, Effect of cesium compounds on the body,Vestn. Akad. Med. Nauk, Sssr. 8 10–18, (1978).Google Scholar
  210. 210.
    Y. Yamauchis, M. Nakamura, and K. Koketsu, Effects of alkali metals on spontaneous motor activities of mice,J. Kurume. Med. 19 175–178, (1972).Google Scholar
  211. 211.
    V. M. Bulaev and R. V. Ostrovskaya, Effect of cesium, lithium and rubidium on some effects of morphine,86 42–44, (1978).Google Scholar
  212. 212.
    C. Pinsky, R. Bose, J. R. Taylor, J. S. C. McKee, C. Lapointe, and J. Birchall, Cesium in mammals: acute toxicity, organ changes and tissues accumultion,J. Environ. Sci. Health (A) 5 549–567, (1981).Google Scholar
  213. 213.
    J. M. Nalecz and L. Wojtczak Effect of monovalent cations on the inhibition by NAD+ of NADH oxidation in submitochondrial particles,Biochem. Biophys. Res. Commun. 80 681–689, (1978).PubMedCrossRefGoogle Scholar
  214. 214.
    M. Arpin, A. M. Reboud, and J. P. Reboud, Conformational changes of large ribosomal subunits of rat liver, induced by some monovalent cations,Acta Biochim. Biophys. 277 134–139, (1972).Google Scholar
  215. 215.
    D. Caisora and V. Eybl, Effect of calcium, indicum, cesium, terbium, Europium and gadolinium on lipoperoxidation and glutathione level in lever of mice and rats,Biologiya 41 1211–1220, (1986).Google Scholar
  216. 216.
    R. R. Fieve, H. Meltzer, R. M. Taylor,Psychopharmacologia 20 307, (1971).PubMedCrossRefGoogle Scholar
  217. 217.
    T. Sato, A study of the postnatal change in trace element levels in rat tissues by thermal neutron activation analysis,76 215–224, (1983).Google Scholar
  218. 218.
    D. Hughes, R. N. McBurney, S. M. Smith, and R. Zorec, Cesium ions activate chloride channels in rat cultured spinal cord neurons,J. Physiol. (London) 392 231–252, (1987).Google Scholar
  219. 219.
    S. M. Smith and R. N. McBurney, Cesium ions: A glycine activated channel against in rat spinal cord neurons grown in cell culture,Br. J. Pharmacol. 96 940–948, (1989).PubMedGoogle Scholar
  220. 220.
    S. Osmanovic and S. A. Shefner, Anamolous rectification in rat locus coeruleus neurons,Brain Res. 417 161–166, (1987).PubMedCrossRefGoogle Scholar
  221. 221.
    T. Hirano, Y. Kidokoro, and H. Ohmori, Acetylcholine dose-response relation and the effect of cesium ions in the rat adrenal chromaffin cell under voltage clamp,Pfluegers. Arch. Eur. J. Physiol. 408 401–407, (1987).CrossRefGoogle Scholar
  222. 222.
    E. P. Sica, A. Pereyra, and J. U. Radici, The action of cesium in neuromuscular transmission,Rev. Asoc. Med. Argent. 81 176–181, (1967).Google Scholar
  223. 223.
    Z. G. Kokaya, M. G. Kokaya, T. Sh. Labakhua, and U. M. Okudzhava, Participation of calcium dependent potassium-conductance in membrane hyperpolarization of pyramidal neurons in the cat sensorimotor cortex,Nei'rofiziologiya 20 383–389, (1988).Google Scholar
  224. 224.
    E. Puil and R. Werman, Internal cesium ions block various potassium conductances in spinal motoneurons,Can. J. Physiol. Pharmacol. 59 1280–1284, (1982).Google Scholar
  225. 225.
    Z. Gottsfeld, Effect of lithium and other alkali metals on brain chemistry and behavior: I. glutamic acid and GABA in brain regions,Psychopharmacologia 45 283–285, (1976).CrossRefGoogle Scholar
  226. 226.
    R. Krulik, I. Farska, and J. Prokes, Effect of rubidium, lithium and cesium on brain ATPase and protein kinases,Neuropsychobiology 3 129–134, (1977).PubMedGoogle Scholar
  227. 227.
    F. Doppler-Bernardi and M. Daune, Interaction of metal ions with DNA: II Preferential adsorption of cesium ion by mucleic acid,Biopolymers 7 671–680, (1969).CrossRefGoogle Scholar
  228. 228.
    R. Bose and C. Pinsky, Central depressant action of cesium in rats and mice,Psychopharmacology 84 80–84, (1984).PubMedCrossRefGoogle Scholar
  229. 229.
    F. N. Johnson, Effects of alkali metal chlorides on activity in rats,Nature 238 333–334, (1972).PubMedCrossRefGoogle Scholar
  230. 230.
    F. A. Jenner, A. Judd, and J. Parker, The effects of lithium, rubidium and caesium on the response of rats to tranylcypromine and alpha-methyl-p-tyrosine given separately or in combination,Br. J. Pharmacol. 54 233–234, (1975).Google Scholar
  231. 231.
    F. S. Messiha, Anti-depressant action of caesium chloride and its modification of chlorpromazine toxicity in mice,Br. J. Pharmacol. 64 9–12, (1978a).PubMedGoogle Scholar
  232. 232.
    F. S. Messiha, Cesium and rubidium salts: effects on voluntary intake of ethanol by the rat,Pharmacol. Biochem. Behav. 9 647–651, (1978b).PubMedCrossRefGoogle Scholar
  233. 233.
    R. B. Rastogi, R. L. Singhal and Y. D. Lapierre, Effects of rubidium and cesium on central catecholamines and locomotor behavior in rats,J. Neurochem. 34 1764–1767, (1980).PubMedCrossRefGoogle Scholar
  234. 234.
    R. Bose and C. Pinsky, Toxicity and CNS activity of acute and chronic cesium in mice,Pharmacologist 22 158 (abstr.) (1980).Google Scholar
  235. 235.
    R. Bose and C. Pinsky, Cesium impairs conditioned avoidance response (CAR) in mice and rats,Proc. Can. Fed. Biol. Soc. 24 101 (abstr.), (1981).Google Scholar
  236. 236.
    R. Bose and C. Pinsky, Cesium attenuates conditioned avoidance response in rats and mice,Pharmacol. Biochem. Behav. 18 867–871, (1983).PubMedCrossRefGoogle Scholar
  237. 237.
    R. Bose and C. Pinsky, Antipsychotic effects of cesium are suggested by mutual synergism between cesium chloride, chlorpromazine and haloperidol on conditioned avoidance response in mice,Res. Commun. Psycho. Psychia. Behav. 8 317–329, (1983).Google Scholar
  238. 238.
    V. A. Ivanov, D. N. Terpilouskaya, A. V. Kulikov, and T. M. Tret'yak, DNA repair in mammalian nerve cells: I. DNA synthesis in the cerebral cortex induced by gamma-irradiation of rats,Tsitologiya 29 73–78, (1987).Google Scholar
  239. 239.
    S. Gyorgyi and K. Blasko, Examination of the competitive effect of alkali ions in the K+, Rb+ and Cs+ transport of rat erythrocytes,Acta Biochim. Biophys. Acad. Sci. Hung. 9 97–105, (1974).PubMedGoogle Scholar
  240. 240.
    G. S. Taylor, D. M. Paton, and E. E. Daniel, Effect of rubidium andGoogle Scholar
  241. 241.
    S. M. Sims and S. Dixon, Inwardly rectifying potassium current in osteoclasts,Am. J. Physiol. 256 C 1277-C 1282, (1989).Google Scholar
  242. 242.
    U. G. Kulikova, Effect of sex, age, castration, sex hormones, and adrenal-ectomy on the behavior of cesium-137 and cesium-144 in rat organisms,Tr. Inst. Biol Ukal'skii Filial. Akad. Nauk. Sssr. 41, 112–123, (1966).Google Scholar
  243. 243.
    F. W. Tufte and M. J. Tufte, The effect of zinc gluconate, vitamin A and caesium salts on colon carcinoma in mice,Cytobios. 39, 177–182, (1984).PubMedGoogle Scholar
  244. 244.
    Z. G. Kokaya, M. G. Kokaya, T. Sh. Labakhua, and V. M. Okudzhava, The effect of intracellular injection of cesium ions on inhibitory postsynaptic potential and postburst hyperpolarization of pyramidal neurons in the cat sensorimotor cortex, IZV.Akad. Nauk. Gruz. Ssr. Ser. Biol. 13 221–225, (1988).Google Scholar
  245. 245.
    D. S. Rubenstein and S. L. Lipsius, Mechanisms automaticity in subsidiary pacemakers from cat right atrium,Circ. Res. 64, 648–657, (1987).Google Scholar
  246. 246.
    F. Hanich, H. Levine, J. F. Spear, and E. N. Moore, Autonomic modulation of ventricular arrhythmia in cesium chloride-induced long QT syndrome,Circulation 77 1149–1161, (1988).PubMedGoogle Scholar
  247. 247.
    J. Brachmann, B. J. Scherlag, L. V. Rosenshtraukh, and R. Lazzara, Bradycardia-dependent triggered activity: relevance to drug-induced multiform ventricular tachycardia,Circulation 68 846–856, (1983).PubMedGoogle Scholar
  248. 248.
    B. Graham, F. Gilmour, M. Stanton, and D. P. Zipes, OPC-88117 suppresses early and delayed after depolarizations and arrhythmias induced by cesium, 4-aminopyridine and the digitalis in canine Purkinje fibres and in the canine heart in situ,Am. Heart. J. 118, 708–716, (1989).PubMedCrossRefGoogle Scholar
  249. 249.
    G. Isenberg, Cardiac purkinje fibers: cesium as a tool to block inward rectifying potassium currents,Pfluegers Arch. Eur. J. Physiol. 365, 99–106, (1976).CrossRefGoogle Scholar
  250. 250.
    L. Edelmann, A method to examine the adsorption of potassium, rubidium and cesium to cell membranes,Biophysik 7, 247–250, (1971).PubMedCrossRefGoogle Scholar
  251. 251.
    V. S. Shvl'zhenko, A. N. Khatkevich, and V. I. Kanel'ko, Protective effect of cesium ions in mycocardial ischemia,Patol. Fiziol. Eksp. Ttr. 0, 15–19, (1988).Google Scholar
  252. 252.
    T. Matsumoto, K. Takeshige, and S. Minakami, Spontaneous induction of superoxide release and degranulation of neutrophils in isotonic potassium medium: The role of intracellular calcium,J. Biochem. (Tokyo) 99, 1591–1596, (1986).Google Scholar
  253. 253.
    H. Sugawara and F. Satofuka, Effect of lithium, rubidium and cesium on the respiration and adenosinetriphosphates actively of brain mitochondria,Sci. Pap Coll. Gen. Educ. Univ. Tokyo (Biol. Part) 15, 165–172, (1965).Google Scholar
  254. 254.
    H. Kimura, K. Koamoto, and Y. Sakai, Climbing and parallel fiber responses recorded intracellularly from Purkinje cell dendrites in guinea pig cerebellar slices,Brain Res. 348, 213–219, (1985).PubMedCrossRefGoogle Scholar
  255. 255.
    K. Prasad and K. K. Midha, Effect of cesium on the properties of cardiac muscle,Jap. Heart J. 14 454–466, (1973).PubMedGoogle Scholar
  256. 256.
    P. Lotz, K. D. Kuhl, and E. T. Harberland, The neurobiology of the cochlea under the influence of various electrolytes,Wiss. Z. Martin Luther Univ. Halle Wittenberg Math. Naturwiss Reihe. 25 (4) 47–50 (1976).Google Scholar
  257. 257.
    R. Yanagimachi and A. Bhattacharya, Acrosome-reacted guinea pig spermatozoa become fusion competent in the presence of extra cellular potassium ions,J. Exp. Zool. 248(3) 354–360, (1988).PubMedCrossRefGoogle Scholar
  258. 258.
    A. V. Gritsak and I. L. Kosharskaya, The action of Rb and Cs ions on depression of automatic function the ventricular pacemakers by frequent stimulation,Byull. Eksp. Biol. Med. 77 23–26, (1974).Google Scholar
  259. 259.
    G. D. Tagdisi and S. D. Aliev, The effect of the trace elements lithium and cesium on some indices of nonspecific resistance of the organism.Izv. Akad. Nauk. Az. Ssr. Ser. Biol. Nauk. 4 13–16, (1972).Google Scholar
  260. 260.
    N. Yamamoto and M. Kasai, Inhibition of a voltage-dependent cation channel in sarcoplasmic reticulum resides by cesium studied by using a potential-sensitive cyanine dye,Biochem. Biophys. Acta. 692(1) 89–96, (1982).PubMedCrossRefGoogle Scholar
  261. 261.
    E. Shamoo and D. H. Maclennan, A Ca++-dependent and-selective ionophre as part of the Ca+++Mg++ dependent adenosinetriphosphatase of sacroplasmic reticulum.Proc. Natl. Acad. Sci. USA 71(4) 3522–3526, (1974).PubMedCrossRefGoogle Scholar
  262. 262.
    M. J. Kornblatt and A. Klugerman, Characterization of the enolase isoenzymes of rabbit brain: kinetic differences between mammalian and yeast enolases,Biochem. Cell Biol. 67(2/3) 103–107, (1989).PubMedCrossRefGoogle Scholar
  263. 263.
    M. Shigekawa and L. J. Pearl, Activation of calcium transport in skeletal muscle sarcoplasmic reticulum by monovalent cations,J. Biol. Chem. 251(22) 6947–6952, (1976).PubMedGoogle Scholar
  264. 264.
    H. G. Glitsh, T. Krahn, and F. Verdonck, Activation of the sodium pump current by external potassium and cesium in cardioballs from sheep purkinje fibres,Arch. Eur. J. Physiol. 414(1) 99–101, (1989).CrossRefGoogle Scholar
  265. 265.
    M. Ya. Akhalaya, S. D. Novosel'tseva, Yu. A. Koclesnikov, G. P. Bogatyrev, E. I. Vartsev, and Y. B. Kubryashov, The effect of cesium and lithium ions on the antiradiation effectiveness of taurine,Biol. Navki. (Mosc.) 19(4) 44–46 (1976).Google Scholar
  266. 266.
    P. De Gomez, M. Tuena, and A. Gomez, the stimulating action of K+ on the hydrolytic activity of soluble mitochondrial ATPase,Biochem. Biophys. Res. Commun. 69(1) 201–205 (1976).CrossRefGoogle Scholar
  267. 267.
    P. Girard and E. Peyre, Suppression of shock and modification of anaphylactic sensitiveness by fluorescent substances.Compt. Rend. Acad. Sci. 183 84–86, (1926).Google Scholar
  268. 268.
    J. R. Clay and F. Shlesinger, Analysis of the effects of cesium ions on potassium channel currents in biological membranes,J. Theor. Biol. 107 189–202, (1984).PubMedGoogle Scholar
  269. 269.
    R. K. Cheung, S. Grinstein, H. Dosch, and E. W. Gelfand, Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease,J. Cell Physiol. 112 189–196, (1982).PubMedCrossRefGoogle Scholar
  270. 270.
    I. Zakrzewska, Effect of ions on amylase activity of human granulocytes,Acta Biol. Acad. Sci. Hung. 33 55–60 (1982).PubMedGoogle Scholar
  271. 271.
    A. C. Hall and J. C. Ellory, Effects of high hydrostatic pressure on “passive” monovalent cation transport in human red cells,J. Membr. Biol. 94 1–18, (1986).PubMedCrossRefGoogle Scholar
  272. 272.
    A. S. Hobbs and P. B. Dunham, Interaction of external alkali metal ions with the Na−K pump of human erythrocytes: A comparison of their effects on activation of the pump and on the rate of ouabain binding,J. Gen. Physiol. 72 381–402, (1978).PubMedCrossRefGoogle Scholar
  273. 273.
    C. Vanoeteren and R. Cornelis, Evaluation of trace elements in human lung tissue, III. Correspondence analysis,The Science of the Total Environment 54 237–245, (1986).PubMedCrossRefGoogle Scholar
  274. 274.
    I. Rosenblum, A. A. Stein, and L. Story, Effect of cesium, potassium and rubidium on development of tension in isolated human uterine muscle,J. Pharmacol. Exp. Therap. 152 231–234, (1966).Google Scholar
  275. 275.
    P. C. Mangal and R. Vijh, Effect of some monovalent and divalent cations on the electric field mediated-hemolysis of human erythrocytes,Indian J. Biochem. Biophys. 24 87–91, (1987).PubMedGoogle Scholar
  276. 276.
    X. Cecchi, D. Wolff, O. Alvarez, and R. Latorre. Mechanisms of cesium blockade in a calcijm-activated potassium channel from smooth muscle.J. Biophys. 52, 707–716 (1987).Google Scholar
  277. 277.
    G. M. Khosid, Information on the health of workers producing salts of cesium and rubidium,Ref. Zh. Otd. Vyp. Farmakol. Khimioter. Sredstva. Toksikol. 11 910 (1967).Google Scholar
  278. 278.
    E. Fujii and T. Nomoto, Central action of cesium chloride in streptozotocin-diabetic mice,Psychopharmacology 93, 173–177 (1987).PubMedCrossRefGoogle Scholar
  279. 279.
    A. El-Yazigi, C. R. Martin, and E. B. Siqueira, Concentrations of chromium, cesium and tin in cerebrospinal fluid of patients with brain neoplasms, leukemia or other noncerebral malignancies and neurological diseases,Clin. Chem. 34 1084–1086 (1988).PubMedGoogle Scholar
  280. 280.
    W. Goddy, T. R. Williams, and D. Nicholas, Spark-source mass spectrometry in the investigation of neurological diseases, I. Multi-element analysis in blood and cerebrospinal fluid,Brain 97, 327–336 (1974).CrossRefGoogle Scholar
  281. 281.
    J. D. Mitchell, A. I. Harris, B. W. East, and B. Pentland, Trace elements in cerebro-spinal fluid in motor neurone disease,J. Br. Med. 288, 1791–1792 (1984).CrossRefGoogle Scholar
  282. 282.
    J. D. Mitchell, B. W. East, A. I. Harris, and B. Pentland, Trace element studies in amyotrophic lateral sclerosis (ALS),Acta Pharmacol. Toxicol. 59 454 (1986).CrossRefGoogle Scholar
  283. 283.
    H. Schicha, W. Muller, and R. Kasperek, The occurrence of trace elements in cerebral tumour sclerosis,Polska,10, 189–1989 (1972).Google Scholar
  284. 284.
    G. S. Shukla, Mechanism of lithium action:In vivo andin vitro effects of alkali metals on brain superoxide dismutase (SOD),Pharmacol. Biochem. Behar. 26, 235–240 (1987).CrossRefGoogle Scholar
  285. 285.
    T. Cserhati and M. Szogyi, Interaction between phospholipids and monovalent cations studied by a thin-layer chromatographic method,Chem. Phys. Lipids 34 93–100 (1984).CrossRefGoogle Scholar
  286. 286.
    P. Dais, K. R. Holme, and A. S. Perlin, A carbon-13 NMR study of selectivity of binding univalent-counterions by heparin,Can J. Chem. 66 2601–2604 (1988).CrossRefGoogle Scholar
  287. 287.
    S. M. Jackson, R. N. Fairley, R. O. Kornelsen, N. E. J. Young, and F. L. Wong, Clinical results of carcinoma of the cervix: radium compared to cesium using remote after loading,Clin. Radiol. 40, 320–306 (1989).CrossRefGoogle Scholar
  288. 288.
    M. B. Nayeboour, C. Solymoss, and S. Nattel, Cardiovascular and metabolic effects of cesium chloride injection in dogs: limination as a model for the long QT syndrome,Cardiovasc. Res. 23, 756–766 (1989).CrossRefGoogle Scholar
  289. 289.
    R. Vera, Cesium: another radiation hazard?Int. J. Radiat. Oncol. Biol. Phys. 11, 1060 (1985).PubMedGoogle Scholar
  290. 290.
    A. Ghosh, A. Sharma, and G. Talukder, Clastogenic effects of cesium chloride on mouse bone marrow cellsin vivo, Mutat. Res. 244 295–298 (1990).PubMedCrossRefGoogle Scholar
  291. 291.
    A. Ghosh, A. Sharma, and G. Talukder, Cytogenetic damage inducedin vivo to mice by single exposure to cesium chloride,Environ. Mol. Mutagenesis 18, 87–91 (1991).CrossRefGoogle Scholar
  292. 292.
    A. Ghosh, A. Sharma, and G. Talukder, Modification of cesium toxicity by calcium in mammalian systems,Biol. Tr. Ele. Res. 31, 139–147 (1991).CrossRefGoogle Scholar
  293. 293.
    A. Ghosh, A. Sharma, and G. Talukder, Comparison of the protection afforded by crude extract ofPhyllanthus emblica fruit and an equivalent amount of synthetic ascorbic acid against the cytotoxic effects of cesium chloride in micein vivo, Fd. Chem., Toxicol. 30, 865–869 (1992).CrossRefGoogle Scholar
  294. 294.
    A. Ghosh, A. Sharma, and G. Talukder, Relative protection given by extract ofPhyllanthus emblica fruit and an equivalent amount of Vitamin C against a known clastogen-cesium chloride,Int. J. Pharmacognosy, (In press) 1992.Google Scholar
  295. 295.
    A. Ghosh, S. Sen, A. Sharma, and G. Talukder, Inhibition of clastogenic effects of cesium chloride in micein vivo by chlorophyllin,Toxicol. Lett. 57 11–16 (1991).PubMedCrossRefGoogle Scholar
  296. 296.
    A. Ghosh, A. Sharma, and G. Talukder, A time-course study of the effects of cesium on mitotic cell division inAllium sativum, Ind. Bot. Soc. (In press) 1992.Google Scholar
  297. 297.
    A. Ghosh, A. Sharma, and G. Talukder, Effect of cesium chloride on plant chromosomes,J. Cytol. Genet. (In press) 1992.Google Scholar
  298. 298.
    N. A. Doggett and W. H. KcKenzie, An analysis of the distribution and dose response of chromosome aberrations in human lymphocytes afterin vitro exposure to137cesium gemma radiation,Radiat. Environ. Biophys. 22 33–51 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Aditi Ghosh
    • 1
    • 2
  • Archana Sharma
    • 1
    • 2
  • Geeta Talukder
    • 1
    • 2
  1. 1.Center for Advanced Study in Cell and Chromosome Research, Department of BotanyUniversity of CalcuttaCalcuttaIndia
  2. 2.Vivekananda Institute of Medical SciencesCalcuttaIndia

Personalised recommendations