Skip to main content
Log in

Effects of cesium on cellular systems

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. D. G. Davis, E. Murphy, and K. E. London, Uptake of cesium ions by human erythrocytes and perfused rat heart: A cesium-133 NMR study,Biochemistry,May 17 3547–3551 (1988).

    Google Scholar 

  2. B. V. R. Sastry and C. T. Spalding,Toxicol. Appl. Pharmacol. 12 141–155 (1968).

    Article  PubMed  CAS  Google Scholar 

  3. H. Nishita, P. Taylor, G. V. Alexander, and K. H. Larson, Uptake of radioactive fission products by plants, inRadioactive Fallouts, Soil, Plants, Food, Man, E. B. Fowler, ed., Elsevier, New York, 1965.

    Google Scholar 

  4. P. Misaelides, C. Sikalidis, R. Tsitouridou, and C. Alexiades, Distribution of fission products from dust samples from the region of Thessaloniki, Greece, after the Chernobyl (USSR) nuclear accident,Environ. Pollut. 47, 1–8 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. L. B. Beentjes and J. H. Duisings, Radioactive contamination in Nijmegen (The Netherlands) rainwater after the Chernobyl (USSR) accident.Sci. Total Environ. 64 253–258 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. J. Gilbey, S. Bradley, and D. E. Walling, The deposition of cesium—137 on grassland at a site in South-West England, UK following the Chernobyl accident,Grass Forage Sci. 42 439–442 (1987).

    Article  CAS  Google Scholar 

  7. T. W. Kuyper, Radioactive cesium in fungi,Coolia 30, 8–12 (1987).

    Google Scholar 

  8. G. Dietl and D. Breitin, Radioactive cesium in mushrooms from Schwaebisch Gmeund area, West Germany,Z. Mykol. 54, 109–112 (1988).

    Google Scholar 

  9. Anonymous, Follow-up of cesium levels following the Chernobyl accident,Radioprotection 22 309–324 (1987).

  10. L. B. Beentjes, W. C. Buijs, F. H. Cortens, and J. H. Duijsings, Radioactive contamination of Kiev (USSR) vacationers after the Chernobyl accident; Biological half-life of cesium,Nucl. Med. Biol. 15 171–176 (1988).

    CAS  Google Scholar 

  11. L. Stenke, B. Axeisson, M. Ekman, S. Larsson, and P. Raizenstein, Radioactive iodine and cesium in travellers to different parts of Europe after the Chernobyl accident (USSR),Acta Oncol. 26, 207–210 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. D. G. Bertrand and D. Bertrand, The presence and content of cesium in arable soils,Compt. Rend Acad. Sci. 229 533–535 (1949).

    CAS  Google Scholar 

  13. J. Pelîsek, The occurrence of lithium, rubidium and cesium in soils of Moravia,Sbor. Ceske. Akad. Zem. 15 402–405 (1940).

    Google Scholar 

  14. A. Wallace, E. M. Romney, and R. A. Wood, The role of stable cesium on plant uptake of cesium-137,Soil Sci. 134 71–75 (1982).

    CAS  Google Scholar 

  15. O. Andreae, Changing geochemical cycles, inChanging metal cycles and human health, J. O. Nriagu, (ed.), Dahlem. Konferenzen, Springer-Verlag, Berlin, pp. 359–373 (1985).

    Google Scholar 

  16. C. J. Warren and M. J. Dudas, Leaching behaviour of selected trace elements in chemically weathered alkaline fly ash.Sci. Total Environ. 76 229–246 (1988).

    Article  CAS  Google Scholar 

  17. Z. A. Khan, S. Brat, and B. M. Misra, Interaction of cesium and strontium with two Indian loams,J Indian Inst. Sci. 689 411–418, (1988).

    Google Scholar 

  18. W. D. Ehmann, Prevalence of the elements,The encyclopedia of the chemical elements, R. Hampel, ed. New York, 1956.

  19. T. R. Folsom, C. Feldmann, and T. C. Rains, Variation of cesium in the ocean,Science 144 538–539, (1964).

    Article  PubMed  CAS  Google Scholar 

  20. T. R. Folsom, N. Hansen, G. J. Parks, Jr. and W. E. Weitz, Jr., Precise measurements of cesium in the ocean by flame emission spectrometry,Appl. Spectrosc. 28, 345–350, (1974).

    Article  CAS  Google Scholar 

  21. P. Bermejo-Barrera, E. Beceiro-Gonzalez, A. Berme-Jo-Barreva, and F. Bermejo-Martinez, Determination of cesium in mineral and thermal water by electrothermal atomic absorption spectrophotometry,Microchem. J. 40 103–108 (1989).

    Article  CAS  Google Scholar 

  22. T. R. Dittrich and C. R. Cothern, Analysis of trace metal particulates in atmospheric samples using x-ray fluorescence,J. Air Pollut. Control Assoc. 21 716–719, (1971).

    CAS  Google Scholar 

  23. A. Wallace, E. M. Romney, R. A. Wood, and G. V. Alexander, Influence of potassium on uptake and distribution of cesium in bush beans,J. Plant Nutr. 6 397–403, (1983).

    CAS  Google Scholar 

  24. Y. Ishikawa, J. Misonoo, and Y. Tateda, Interspecific comparison of concentrations of some stable elements in algae of the family Sargassaceae, O (U 86012) 1–13, (1987).

  25. R. Seeger and P. Schwein-Shaut, Occurrence of cesium in higher fungi,Sci. Total Environ.,19 253–276, (1981).

    Article  CAS  Google Scholar 

  26. G. M. Roomans and L. A. Seveus, Subcellular localization of diffusible ions in the yeastSaccaromyces cerevisiae: Quantitative microprobe analysis of thin freeze-dried sections,J. Cell Sci. 21 119–127 (1976).

    PubMed  CAS  Google Scholar 

  27. R. R. Becker, A. Veglia, and E. R. Schmid, Determination of trace elements in feeding stuffs of a mine district by instrumental neutron activation analysis,Budenkultur. 26 312–320, (1975).

    CAS  Google Scholar 

  28. D. K. Teherani, Trace elements analysis in rice,J. Radioanal. Nucl. Chem. 117 133–144, (1987).

    Article  CAS  Google Scholar 

  29. M. Gabrashanska and A. Damyanova, Comparative investigations of the mineral content of helminths (Fasciola hepatica, Moniezia expansa, Ascaridia galli,Paramphistomum sp.),Khelmintologiya,24 12–19, (1987).

    Google Scholar 

  30. A. Damyanova and M. Gabrashanska, Mineral composition of helminthes and of their host tissues:Fasciola hepatica L, 1758 and itssues ofBon taurus, Khelmintologiya 26 3–9, (1988).

    Google Scholar 

  31. M. Gabrashanska, I. Kanev, and A. Damyanova, Mineral composition of four parasite species of class trematada and their fresh-water snail hosts,6th International Trace element symposium M. Anke, W. Baumann, H. Braunlich, C. Bruckner, B. Groppel and N. Gruin, eas. Leipzig, 1989.

  32. A. J. Ince, Some elements and their relationships inAscaris suum, Int. J. Parasitol. 6 127–128, (1976).

    Article  PubMed  CAS  Google Scholar 

  33. V. P. Nesterov and I. A. Skul'skii, Comparative study of the distribution of lithium, sodium, potassium, rubidium and cesium,Zh. Evolyuts. Biokhim. Fiziol. 1 151–157, (1965).

    CAS  Google Scholar 

  34. N. Hansen, T. R. Folsom, and W. E. Weitz, Determination of alkali metals in blood from north Pacific albacore,Comp. Biochem. Physiol. A. Comp. Physiol. 60 491–496, (1978).

    Article  Google Scholar 

  35. I. A. Skul'skii, I. V. Burovina, and V. G. Leont'ev, Peculiarities in distribution of sodium, potassium, rubidium and caesium in fresh water, migrating and marine fishes,Zh. Evol. Blokhim, Fiziol. 3 16–24, (1967).

    Google Scholar 

  36. Y. P. Kanevskii and D. G. Fleishman, Investigations of food relations in the ichthyocenosis of Lake Dal'nii (Kamchatka) based on rubidium and cesium concentrations in hydrobionts,Ekologiya 2, 5–8, (1971).

    Google Scholar 

  37. R. J. Olson and C. H. Boggs, Apex predation by yellowfin tuna (Thunnus albacares): Independent estimates from gastric evaluation and stomach concents, bioenergetics and cesium concentrations,Can. J. Fish Aquat. Sci. 43 1760–1775, (1986).

    Article  Google Scholar 

  38. N. Ito, H. Shimoya, Y. Kanaji, N. Iwamoto, and Y. Furukawa, Determination of elements in bovine tissues by instrumental neutron activation analysis,Radioisotopes 35 65–69, (1986).

    PubMed  CAS  Google Scholar 

  39. T. Sato and T. Kato, Determination of trace elements in various organs of rats by thermal neutron activation analysis.J. Radioanal. Chem. 53 181–190, (1979).

    Article  CAS  Google Scholar 

  40. B. Maziere, C. Loc'w, O. Stulzart, A. Gaudry, and D. Comar,J. Radioanal. Chem. 37 617 (1977).

    Article  CAS  Google Scholar 

  41. D. Gawlik, D. Behne, D. Kraft, and G. Offermann, The influence of renal insufficiency on caesium metabolism in man and rat (with a note on some biological standard materials).J. Trace Elem. Electrolytes Health Dis. 3 43–50, (1989).

    PubMed  CAS  Google Scholar 

  42. M. Decowski and K. Malwinska, Affinity of bovine tissues and to cesium,Bull. Vet. Inst. Pulawy. 11 137–140, (1969).

    Google Scholar 

  43. J. Versieck, J. Hoste, F. Barbier, H. Michels, and J. Derudder, Simultaneous determination of iron, zinc, selenium, rubidium and cesium in serum and packed blood cells by neutron activation analysis.Clin. Chem. 23 1301–1305, (1977).

    PubMed  CAS  Google Scholar 

  44. K. Kasperek, G. V. Iyengar, J. Kiem, H. Borberg, and L. Feinendegen, Elemental composition of platelets: 3. Determination of silver, gold, cadmium, cobalt, chromium, cesium, molybdenum, rubidium, antimony and selenium in normal human platelets by neutron activation analysis.Clin. Chem. 25, 711–715, (1979).

    PubMed  CAS  Google Scholar 

  45. G. E. Harrison, A. Sutton, K. B. Edwards, and H. Shepherd, Concentrations of radioactive and stable caesium in bone and soft tissues.Brit. Jour. Radiol. 36 745–748, (1963).

    CAS  Google Scholar 

  46. J. Rundo, A survey of the metabolism of caesium in man, in:The metabolism of biologically important radionuclides, 1963,Brit. Journ. Radiol. 37 108–114, (1964).

  47. L. Lian-qing and H. Wen, Determination of trace elements in human bone in the Beijing (China) area by neutron activation analysis,Chin. J. Prev. Med. 22 98–100, (1988).

    Google Scholar 

  48. F. J. Cumming, J. J. Faroy, and M. H. Briggs, Trace element in human milk,Obstet. Gynecol. 62 506–608, (1983).

    PubMed  CAS  Google Scholar 

  49. M. Persigehl, H. Schicha, K. Kasperek, and H. J. Klein, Trace element concentration in human organs in dependence of age,Beitr. Pathol. 161 209–220, (1977).

    PubMed  CAS  Google Scholar 

  50. W. R. Markesbery, W. D. Ehmann, M. Alauddin, and T. I. M. Hossain, Brain trace element concentrations in aging,Neurobiol. Aging 5 19–28, (1984).

    Article  PubMed  CAS  Google Scholar 

  51. F. M. Corrigan, G. P. Reynolds, and N. I. Ward, Multi-element analysis of the frontal cortex, temporal cortex and basal ganglia in schizophrenia,Neurobiol. Aging 7 1–7 (1990).

    CAS  Google Scholar 

  52. W. D. Ehmann, W. R. Markesbury, M. Alauddin, T. I. M. Hossain and E. H. Brubaker, Brain trace element in Alzheimer's disease,Neurotoxicology 7 197–206 (1986).

    CAS  Google Scholar 

  53. C. M. Thompson, W. R. Markesbery, W. O. Ehmann, Y. X. Mao, and D. E. Vance, Regional brain trace-element studies in Alzheimer's disease,Neurotoxicology 9 1–8 (1988).

    PubMed  CAS  Google Scholar 

  54. S. A. Ali, M. Paet, and N. I. Ward, Blood levels of vanadium, cesium and other elements in depressive patients,J. Aff. Disord. 9, 187–191 (1985).

    Article  CAS  Google Scholar 

  55. R. Kumar, I. Wright, G. J. Naylor and N. Ward, Cesium levels in manic depressive psychosis,J. Aff. Disord. 17 17–20 (1988).

    Article  Google Scholar 

  56. R. Cornelis, L. Mees, S. Ringoir, and J. Hoste, Serum and red blood cell in zinc, selenium, cesium and rubidium in dialysis patients,Miner. Electrolyte Metab. 2 88–93 (1979).

    CAS  Google Scholar 

  57. G. D. Theodossiadis, T. C. Kouris, and E. M. Baikaktari-Kouri, Determination of chromium and cesium in human cataractous lenses,Acta Ophthalmol. 60 788–794 (1982).

    CAS  Google Scholar 

  58. L. A. Il'in, V. Yu. Bekreneva, V. P. Dolganov, D. P. Arkhipov, N. P. Teryukova, V. F. Tryufanov, and D. V. Shestov, Trace elements and thin connection with blood cell lipids and ischemic heart disease in a group of 40–59 year old males living in Leningrad (USSR),Kardiologiya 22 35–39 (1982).

    PubMed  Google Scholar 

  59. D. D. Zdankiewcz and J. L. Fasching, Analysis of whole blood by neutron activation: A search for a biochemical indicator of neoplasia,Clin. Chem. 22 1361–1365 (1976).

    Google Scholar 

  60. P. Taylor, J. Vennart, and D. M. Taylor, Retention and excretion of caesium-137 by man,Phys. Med. and Biol. 7 157–165 (1962).

    Article  CAS  Google Scholar 

  61. L. G. Bengtsson, Y. Naversten, and K. G. Svensson, Material and infantile metabolism of cesium, in:Assessment of radioactivity in man, Proceedings of the symposium on the assessment of radioactive body burdens in man, The International Atomic Energy, ILO, and WHO, Hiedelberg, 1964.

    Google Scholar 

  62. U. Boikat, A. Fink, and J. Bleck-Neuhans, Cesium and coblat transfer from soil to vegetation on permanent pasture,Radiat. Environ. Biophys. 24 287–301 (1985).

    Article  PubMed  CAS  Google Scholar 

  63. I. Bundesminister, Statusbericht uber den Transfer von Radionukliden, Bonn, 1980.

  64. E. M. Romney, A. Wallace, R. K. Schulz, J. Kinnear, and R. A. Wood, Plant uptake of237Np,239,240Pu,241Am and244Cm from solis representing major food production areas of the United States,Soil Sci. 132 40–49 (1981).

    CAS  Google Scholar 

  65. R. K. Schulz, Soil chemistry of radionuclides,Health Phys. 11 1317–1324 (1965).

    PubMed  CAS  Google Scholar 

  66. T. J. D'Souza, R. Kirchmann, and J. J. Lehr, Distribution of radiostrontium and radiocesium in the organic and mineral fraction of pasture soils and their subsequent transfer to grasses,IAEA-Symposium on isotopes and radiation in soil-plant relationship including forestry, Wein, 1972.

  67. H. Gedhardt, L. Giani, and V. Rosemann, Bodenkundliche Kennzeichung und Nuklidaus-tauscheigenschaften von Marschboden, Sachbericht zum BMI-Forschungsvorhaben,St. Sch.,702e (1981).

  68. I. V. Gulyakin and E. V. Yudintseva, Effect of Organic matter on the accumulation of fission products in crops,Compost Sci. 2 9–12 (1962).

    Google Scholar 

  69. K. B. Mistry, B. M. Bhujbal, and T. J. D'Souza, Influence of agronomic particles on uptake of fission products by crops from soil of regions adjoining nuclear installations in India,IAEA-Symposium: Environmental behavior of radionuclides released in the nuclear industry, Wien, 1973.

  70. M. Tahir and J. W. B. Stewart, Effect of organic matter incorporation into soils on cesium-137 uptake by wheat plants,Radiat. Bot. 15 323–328, (1975).

    Article  Google Scholar 

  71. J. Handle and W. Kuhn, Determination of transfer coefficients for Cs-137 and Co-60 in a slime-soil-grassland ecosystem,Health Phys. 703–705, (1980).

  72. J. F. Cline, Aging effects of the availability of strontium and cesium to plants,Health Phys. 41 293–296, (1981).

    PubMed  CAS  Google Scholar 

  73. J. Stary, K. Kratzer, and J. Prasilova, Cumulation of alkali earths and alkali metals on algae,Int. J. Environ. Anal. Chem. 14 161–168, (1983).

    Article  CAS  Google Scholar 

  74. D. P. Marchyulene, A radiochemoecological study of hydrophytes in Lithuanian fresh water basin,27 813–819, (1987).

    Google Scholar 

  75. W. J. G. Derks and G. W. F. H. Borst-Pauwels, Apparent 3-site kinetics of cesium ion uptake by yeast,Physiol. Plant 46 241–246, (1979).

    Article  CAS  Google Scholar 

  76. P. Eckl, W. Hofmann, and R. R. Tuerk, Uptake of natural and man-made radionuclides by lichens and mushrooms,Radiat. Environ. Biophys. 25 43–54, (1986).

    Article  PubMed  CAS  Google Scholar 

  77. K. M. Ellis and J. N. Smith, Dynamic model for radionuclide uptake in lichen,J. Environ. Radioacts. 5 185–208, (1987).

    Article  CAS  Google Scholar 

  78. A. R. Memom, T. Kuboi, K. Fujii, S. Ito, and M. Yatazawa, Taxonomic character of plant species in absorbing and accumulating alkali and alkali earth metals grown in temperate forest of Japan,Plant Soil 70 367–390, (1983).

    Article  Google Scholar 

  79. E. Levi, The influence of accompanying cations on the foliar uptake of sodium, potassium, rubidium and cesium,Physiol. Plant 23 871–877, (1970).

    Article  CAS  Google Scholar 

  80. A. Wallace, M. Romney, R. A. Wood, and G. V. Alexander, Influence of potassium uptake and distribution of cesium in bush beans (Phaseolus vulgaris cultivar improved tendergreen),J. Plant. Nutr. 6 397–404, (1983).

    CAS  Google Scholar 

  81. J. C. Mcfarlane and W. L. Berry, Cation penetration through isolated leaf cuticles,Plant Physiol. 53 723–727, (1974).

    PubMed  CAS  Google Scholar 

  82. H. Th. Wolterbeek and M. DeBruin, Xylem and phloem import of Na+, K+, Rb+, Cs+ and Sb(SO4)2 in tomato fruits: Differential contributions from stem and leaf,J. Exp. Bot. 37 928–939, (1986).

    Article  CAS  Google Scholar 

  83. H. Th. Wolterbeek, J. Van Luipen, and M. DeBruin, Actual escape area and lateral escape from the xylem of the alkali ions Na+, K+, Rb+ and Cs+ in tomato,Physiol. Plant 65 467–475, (1985).

    Article  CAS  Google Scholar 

  84. G. Shaw and J. N. B. Bell, The kinetics of cesium absorption by roots of winter wheat and the possible consequences for the derivation of soil-to-plant-transfer factors for radiocesium,J. Environ. Radioact. 10 213–232, (1989).

    Article  CAS  Google Scholar 

  85. J. P. Witherspoon and G. N. Brown, Translocation of Cesium-137 from parent trees to seedlings ofLiriodendron tulipifera, Bot. Gaz. 126 181–185, (1965).

    Article  CAS  Google Scholar 

  86. I. A. Skul'skii, N. B. Pivovarova, and I. V. Burovina, Active and passive transport of rubidium and cesium in single neurons of the snailPlanorbarius corneus as revealed by x-ray microanalysis,Tsitologiya 29 208–213, (1987).

    Google Scholar 

  87. K. Zerahn, Active transport of cesium by the isolated and short-circuited midgut ofHyalophora cecropia, J. Exp. Biol. 53, 641–649 (1970).

    PubMed  CAS  Google Scholar 

  88. J. L. Hayes, Detection of single and multiple race element labels in individual eggs diet rearedHiliothis virescens (Lepidoptera: Noctuidae).Ann. Entomol. Soc. Am. 82 340–345, (1989).

    Google Scholar 

  89. D. A. Crossley, Radioisotopes measurement of food consumption by a leaf bettle species,Chrysomela knabi Brown,Ecology 47 1–8, (1966).

    Article  Google Scholar 

  90. Y. P. Kanevskii and D. G. Fleishman, Comparitive investigations of the accumulation of rubidium, cesium and potassium by roach and perch under natural conditions,Ekologiya 2 10–14, (1971).

    Google Scholar 

  91. L. Edelmann, Preferential localized uptake of potassium and cesium over sodium in the A-band of fresh dried embedded muscle section: Detection by x-ray microanalyses and laser microprobe analysis,Physiol. Chem. Phys. 12 501–514, (1981).

    Google Scholar 

  92. L. Edelmann, Potassium binding sites in muscle: Electron microscopic visualization of potassium, rubidium and cesium in freeze-dried preparations and autoradiography at liquid nitrogen, temperature using rubidium-86 and cesium-134,Histochemistry 67, 233–242, (1986).

    Article  Google Scholar 

  93. L. Edelmann, Electron probe x-ray microanalysis of potassium, rubidium, cesium and titanium in cryosections of straited muscles,Physiol. Chem. Phys. Med. Nmr. 15 337–344, (1983).

    PubMed  CAS  Google Scholar 

  94. R. P. Kernan, Accumulation of caesium and rubidiumin vivo by red and white muscles of the rat,J. Physiol. 204 195–205, (1969).

    PubMed  CAS  Google Scholar 

  95. R. P. Kernan, Studies of caesium uptake by rat soleus and vastus lateralis musclesin vivo and its efflux rate relative to potassiumin vitro, Pfluegers Arch. Eur. J. Physiol. 333 95–110, (1972).

    Article  CAS  Google Scholar 

  96. Z. Gregus and C. D. Klaassen, Disposition of metals in rats: A comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals,Tox. Appl. Pharmacol 85 24–38, (1986).

    Article  CAS  Google Scholar 

  97. F. S. Messiha, Distribution and retention of exogenously administered alkali metal ion in the mouse brain,Arch. Int. Pharmacodyn. Ther. 219 87–96, (1976).

    PubMed  CAS  Google Scholar 

  98. Y. Arimatsu and K. Ito, Active transport of cesium into brain slices,Sci. Pap. Coll. Gen. Educ. Univ. Tokyo Biol. 19 225–237, (1969).

    CAS  Google Scholar 

  99. J. Van Don Hoek, Cesium metabolism in sheep and the influence of orally ingested bentonite on cesium absorption and metabolism,Z. Tierphysiol. Tierernaehr. Futter. Mittelkd. 37 315–321, (1976).

    Google Scholar 

  100. I. V. Burovina, I. A. Skul'skii, and D. G. Fleishman, Interrelationship between the contents of stable cesium, cesium137 and other alkaline elements in the brain and muscles of the reindeer,Zh. Evol. Bio. Khim. Fiziol. 3, 281–286, (1967).

    CAS  Google Scholar 

  101. R. Steinwender, L. Lettner, L. Gruber, G. Uray, and A. Kapp, Experimental studies on the relationship between cesium concentration and yield in the milk of dairy cows,Bodenkultur. 39 269–280, (1988).

    CAS  Google Scholar 

  102. W. Moore, Absorption of caesium 137 from the gastrointestinal tract of the rat,Internatl. J. Radiation Biol. 5 247–254, (1962).

    Article  CAS  Google Scholar 

  103. J. E. Furchner and C. R. Richmond, Effect of environmental temperatures on retention of cesium-137 by mice,J. Appl. Physiol. 18 786–788, (1963).

    PubMed  CAS  Google Scholar 

  104. J. E. Johnson, D. Garner, and G. M. Ward, Influence of dietary potassium, rubidium, or sodium on the retention time of radiocesium in rats,Proc. Soc. Exp. Biol. Med. 127 857–860, (1968).

    PubMed  CAS  Google Scholar 

  105. C. E. Miller, A. J. Finkel, and N. B. Wright,137 cesium retention in mice of different ages,Proc. Soc. Exp. Biol. Med. 128 563–566, (1968).

    PubMed  CAS  Google Scholar 

  106. J. E. Furchner, G. A. Trafton, and C. R. Richmond, Distribution of cesium137 after chronic exposure in dogs and mice,Proc. Soc. Exptl. Biol. Med. 116 375–378, (1964).

    CAS  Google Scholar 

  107. W. Moore and C. L. Comar, Foetal metabolism of caesium-137 in the rat,Internat. Jour. Radiat. Biol. 6 233–239, (1963).

    Article  CAS  Google Scholar 

  108. H. Wasserman, C. L. Comar, and D. N. Tapper, Influence of dietary potassium and sodium on cesium-137 retention in rats,Proc. Soc. Exptl. Biol. and Med. 133 305–307, (1963).

    Google Scholar 

  109. R. Krulik, I. Farska, J. Prokes, and R. Tykua, Distribution of cesium in the organism and its effect on the nucleotide metabolism enzymes,Int. Pharmacopsychiatry 15 157–165, (1980).

    PubMed  CAS  Google Scholar 

  110. B. Rosoff, S. H. Cohn, and H. Spencer, I. Cesium-137 metabolism in man,Radiat. Res. 19, 634–654, (1963).

    Article  Google Scholar 

  111. N. Yamagata, Balance of potassium, rubidium and caesium between Japanese people and diet and assessments of their biological half-times,Nature 196 83–84, (1962).

    Article  PubMed  CAS  Google Scholar 

  112. C. Vanoetern, R. Cornelis, and P. Verbeeck, Evaluation of trace elements in human lung tissue: III. Correspondance analysis,Sci. Total Environ. 54 237–246, (1986).

    Article  Google Scholar 

  113. G. Lal, N. P. S. Sidhu, I. Singh, V. K. Mittal, and H. S. Sahota, Neutron activation analysis of trace elements in human hair: Effect of dietary and environmental factors,Nucl. Med. Biol. 14 499–502, (1987).

    CAS  Google Scholar 

  114. G. F. Clemente, G. Ingrao, and G. P. Santaroni, Concentrations of some trace elements in human milk from Italy,Sci. Total Environ. 24 255–266, (1982).

    Article  PubMed  CAS  Google Scholar 

  115. M. Fujita, Derivation of retention equations of cesium in human in internal organs by compartmental analysis,Health Phys. 22 125–134, (1972).

    PubMed  CAS  Google Scholar 

  116. T. F. McGraw, The half-time of cesium-137 in man,Radiol. Health Data 6 711–718, (1965).

    Google Scholar 

  117. J. C. Skou,Acta Biochim. Biophys. 42 6–23, (1960).

    Article  CAS  Google Scholar 

  118. R. Whittam and M. E. Ager, Vectorial aspects of adenosine triphosphatase activity in erythrocyte membranes.J. Biochem. 93 337–348, (1964).

    CAS  Google Scholar 

  119. H. Bader and A. K. Sen,Acta Biochim. Biophys. 118 116–123, (1966).

    CAS  Google Scholar 

  120. P. F. Baker, M. P. Baustein, R. D. Keynes, J. Manil, T. I. Shaw, and R. A. Steinhardt,200 459–496, (1969).

    Google Scholar 

  121. L. J. Mullins,J. Biophys. 15 921–931, (1975).

    CAS  Google Scholar 

  122. C. J. Chang, Inorganic salts and the growth of spiroplasmas,32 861–866, (1986).

    CAS  Google Scholar 

  123. A. Nookt, C. L. A. M. Van Den Dries, C. W. A. Pleij, E. M. J. Jaspars and L. Bosch, Properties of turnip yellow mosaic virus in cesium chloride solutions: the formation of high density components,Virology 120 412–421, (1982).

    Article  Google Scholar 

  124. J. E. Mapoles, J. W. Anderegg, and R. R. Rueckert, Properties of poliovirus propagated in medium containing cesium chloride: implications for picornaviral structure,Virology 90, 103–111, (1978).

    Article  PubMed  CAS  Google Scholar 

  125. M. Lembo, Lithium ion, Managanese (II) and cesium binding capacity of a psychrophilic microorganism developing at various temperatures,Rass. Med. Sper. 27, 759–763, (1980).

    CAS  Google Scholar 

  126. I. V. Myagkikh and T. V. Demidkina, Effects of monovalent cations on the catalytic and opectral properties of tyrosine phenol-lyase fromCitrobacter intermedius, Mol. Biol. 19, 671–678, (1985).

    CAS  Google Scholar 

  127. A. Demidkina, V. Tatyana, and I. V. Myagkikh, The activity and reaction specificity of tyrosine phenol-lyase regulated by monovalent cations,Biochimie.71, 565–572, (1989).

    Article  PubMed  CAS  Google Scholar 

  128. F. Sgarrella, V. Mura, R. Catalani, A. Pitli, and P. L. Ipata, Preliminary characterization of adenosine deaminase (EC, 3.5.4.4) fromBacillus cereus, Boll. Soc. Ital. Biol. Sper. 58, 1145–1151, (1983).

    Google Scholar 

  129. M. I. Lerman, Studies on the structure of ribosomes II. Stepwise dissociation of protein from ribosomes by caesium chloride and the reassembly of ribosome like particles,J. Mol. Biol. 15, 268–281, (1966).

    PubMed  CAS  Google Scholar 

  130. G. Tamas, M. Szogyi, and I. Tarjan, Effect of various metal ions on the streptomycin uptake ofE. coli B cells,Acta Biochem. Biophys. Acad. Sci. Hung. 9 107–113, (1974).

    CAS  Google Scholar 

  131. D. Bossemeyer, A. Schloesser, and E. P. Bakker, Specific cesium transport via theEscherichia coli Kup (Trk D) potassium uptake system,J. Bacteriol. 171 2219–2221, (1989).

    PubMed  CAS  Google Scholar 

  132. M. C. Neville, and G. N. Ling, Synergistic activation of-galactosidase by Na+ and Cs+,Arch. Biochem. Biophys. 118 596–610, (1967).

    Article  PubMed  CAS  Google Scholar 

  133. A. R. Hunaiti, and P. E. Kolattukudy, Isolation and characterization of an acylcoenzyme A carboxylase from an erythromycin-producingStreptomyces erythraeus, Arch. Biochem. Biophys. 216 362–371, (1982).

    Article  PubMed  CAS  Google Scholar 

  134. A. L. Tarasov, I. S. Zvyagintseva, and V. K. Plakunov, The effect of monovalent cations and some inhibitors on the transport of four carbon dicarboxylic acids in extreme halophilic archebacteria,Mikrobiologiya 54 869–875, (1986).

    Google Scholar 

  135. S. Nagata, Influence of salts and pH on the growth as well as NADH oxidase of the halotolerant bacterium A505,Arch. Microbiol. 150 302–308, (1988).

    Article  CAS  Google Scholar 

  136. J. Vinograd, J. Morris, N. Davidson, and W. F. Dove, The buoyant behaviour of viral and bacterial DNA in alkaline cesium chloride,Proc. Nat. Acad. Sci. USA. 49 12–17, (1963).

    Article  PubMed  CAS  Google Scholar 

  137. J. Vinograd, R. Greenwald, and J. E. Hearst, Effect of temperature on the buoyant density of bacterial and viral DNA in cesium chloride solutions in the ultracentrifuge,Biopolymers 3 109–114, (1965).

    Article  CAS  Google Scholar 

  138. R. Strauss, Effects of rubidium and cesium on the growth and mineral nutrition of the characeae,Hydrobiologia 71 87–94, (1980).

    Article  CAS  Google Scholar 

  139. M. Tester, Blockade of potassium channels in the plasmalemma ofChara corallina, by tetraethylammonium (Tea+), Ba2+, Na+ and Cs+,J. Membr. Biol. 105 77–86, (1988).

    Article  Google Scholar 

  140. M. Tester, Pharmacology of potassium channels in the plasmalemma of the green algaChara corallina, J. Membr. Biol. 103 159–170, (1988).

    Article  CAS  Google Scholar 

  141. M. Tester, Potassium channels in the plasmalemma ofChara corallina are multi-ion pores: Voltage-dependent blockade by cesium and anomalous permeabilities,J. Membr. Biol. 105 87–94, (1988).

    Article  Google Scholar 

  142. V. R. Shatilov, M. A. Kasparova, and V. L. Kretovich, Effect of monovalent cations onChlorella glutamate dehydrogenase,Biokhimiya,41 1636–1640, (1976).

    CAS  Google Scholar 

  143. G. Lysek, and K. Schruefer, Rhythmic growth inPodospora anserina, Ber. Dtsch. Bot. Ges. 94 105–112 (1981).

    CAS  Google Scholar 

  144. A. Pena, and J. Ramirez, Effects of monovalent cations on derepression of phosphate transport in yeast (Saccharomyces cerevisiae),Biochem. Biophys. 855 179–185, (1986).

    Article  CAS  Google Scholar 

  145. O. S. Lawrence, J. J. Cooney, and G. M. Gadd, Toxocity of organotins towards the marine yeastDebaryomyces hansenii, Micro. Ecol. 17, 275–286 (1989).

    Article  Google Scholar 

  146. R. B. Bailey, E. D. Thompson, and L. W. Parks, Kinetic properties of S-adenosyl methionine: △ sterol methyl transferase enzyme(s) in mitochondrial 02 structures ofSaccharomyces cerevisiae, Acta Biochem. Biophys. 334 127–136 (1974).

    CAS  Google Scholar 

  147. N. Kurita, and M. Funabashi, Growth-inhibitory effect of fungi on alkali cations and monovalent inorganic anions and antagonism among different alkali cations,Agric. Biol. Chem. 48, 887–893 (1984).

    CAS  Google Scholar 

  148. M. J. Hynes, Repression of enzymes of nitrogen catabolism by methylammonium and caesium chloride in strains ofAspergillus nidulans insensitive to ammonium repression,Mol. Gen Genet. 132 147–152 (1974).

    PubMed  CAS  Google Scholar 

  149. W. K. Holloman, and C. A. Dekker, Control by cesium and intermediates of the citric acid cycle of extracellular ribonuclease and other enzymes involved in the assimilation of nitrogen,Proc. Natl. Acad. Sci. USA 68 2241–2245 (1971).

    Article  PubMed  CAS  Google Scholar 

  150. M. Kamekura, and H. Onishi, Cell-associated cations of the moderate halophileMicrococcus varians ssp.halophilus grown on media of high concentrations of lithium chloride, sodium chloride, potassium chloride, rubidium chloride or cesium chloride,Can. J. Microbiol. 28, 155–161 (1982).

    Article  CAS  Google Scholar 

  151. V. V. Kabanov, and N. A. Myasoedov, Toxicity of alkaline cations for tomato plants,Fiziol. Rast. 21 391–397 (1974).

    CAS  Google Scholar 

  152. H. A. Kordan, and F. R. Oritseje, Adverse photosensitive growth behaviour of tomato (Lycopersicon esculentum) seedlings germinated on cesium chloride,Biochem. Physiol. Pflanzen 179 717–721 (1984).

    CAS  Google Scholar 

  153. V. V. Kabanov, and N. A. Myasoedov, Effect of alkaline elements on the composition of nitrogen compounds in tomato leaves,Fiziol. Rast. Mosc. 21 1223–1229 (1974).

    CAS  Google Scholar 

  154. N. A. Myasoedov and V. V. Kabanov, Effects of chlorides of alkaline elements on ionic composition of tomato organs,21 826–832 (1974).

    CAS  Google Scholar 

  155. H. A. Kordan, Photosensitivity of hypocotyl hook of caesium-treated tomato seedlings,New Phytol. Plant and Soil 101 565–569 (1985).

    Article  CAS  Google Scholar 

  156. H. A. Kordan, Effects of alkali metal cations on root extension in germinating tomato seedlings,New Phytol. 107 145–148 (1988).

    CAS  Google Scholar 

  157. H. A. Kordan, Reversal of caesium inhibition of growth by potassium in hypocotyls of tomato seedlings (Lycopersicon esculentum L.)New Phytol. 107 395–401 (1987).

    Article  CAS  Google Scholar 

  158. M. T. Panicera, R. P. Walgenbach, and R. J. Bula, Cation radius and pH of drying agent solutions influence on alfalfa drying rates,J. Agron. 81 174–178 (1989).

    Article  Google Scholar 

  159. T. P. Johnson, and J. W. Thomas, Increased drying rate of cut luceine (alfalfa)Medicago sativa with alkali metal carbonate solutions,J. Sci. Food Agric. 34 534–540 (1983).

    Article  CAS  Google Scholar 

  160. T. Rinnan, and A. Johnsson, Effects of alkali ions on the circadian leaf movements of Oxalis regnellii,Physiol. Plant 66 139–143 (1986).

    Article  CAS  Google Scholar 

  161. M. Z. Iqbal, and M. A. Qadir, Determination of bromine, rubidium, cesium, scandanium and sodium in various plant leaves located in an urban park by neutron activation analysis,J. Radioanal. Nucl. Chem. 145 189–196 (1990).

    Article  Google Scholar 

  162. B. H. Shah, Effect of some cations on the sodium uptake in excised and intact roots of wheat, pea and cucumber,J. Sind Univ. Res. (Sci. Ser.) 4 59–68 (1971).

    Google Scholar 

  163. F. M. Chaudhury, Zinc absorption by wheat seedlings: Inhibition by macronutrient ions in short-term experiments and its relevance to longterm zinc nutrition,Soil Sci. Soc. Am. Proc. 36 323–327, (1972).

    Article  Google Scholar 

  164. P. A. Vlasyuk and M. S. Halins'a, Effects of rubidium, nickel and cesium on the enzyme activity in germinating seeds of cucumber,Doppv. Akad. Nauk. Ukr. Res. Ser. B. Heol. Heofiz. Khim. Biol. 32 949–952, (1970).

    CAS  Google Scholar 

  165. N. C. Nielsen and P. K. Stumpf, Activation of wheat germ acetyl CoA carboxylase by potassium and rubidium,Biochem. Biophys. Res. Common. 68 205–210, (1976).

    Article  CAS  Google Scholar 

  166. P. A. Vlasyuk, E. A. Rubanyuk, M. S. Galinskaya, and O. F. Cherkavskii, The effect of presowing enrichment with cesium, nickel and rubidium on the metabolism of sprouting winter wheat and corn seeds,Fiziol. Biokhim. Kul't. Rast. 2 160–167, (1970).

    CAS  Google Scholar 

  167. H. Marschner and I. Gunther, Changes in the fine structures of the chloroplasts in barley shoots under the action of cesium,Flora. Allg. Bot. Zeitung (Jena) 156 684–696, (1966).

    CAS  Google Scholar 

  168. H. Marschner, Chlorophyll formation and leaf injury under the influence of cesium ions,Flora Allg. Bot. Zeitung (Jena) 154 30–51, (1964).

    Google Scholar 

  169. H. Marschner, Cesium induced accumulation of porphylin and protochlors phyllide in barley shoots,Flora oder. Allg. Bot. Leigung 155 558–572, (1965).

    CAS  Google Scholar 

  170. R. M. Rotfarb, V. L. Kalyer, and I. I. Paromchik, The mechanism of the distribution of chlorophyll biosynthesis induced by cesium,Yestsi. Akad. Navuk. Byelarus. Ssr. Syer, Biyal, Navuk. 3 114–115, (1970).

    Google Scholar 

  171. N. Murata, Effects of monovalent cations on light energy distribution between two pigment systems of photosynthesis in isolated spinach chloroplasts,Acta Biochem. Biophys. 226 422–432, (1971).

    Article  CAS  Google Scholar 

  172. D. L. Cronkite and M. Burg, Ion regulation in potassium sensitive mutants ofParamecium tetraaurelia, J. Cell Physiol. 110 271–276, (1982).

    Article  PubMed  CAS  Google Scholar 

  173. P. R. Brink and S. Fan, Patch Clamp recordings from membranes which contain gap junction channels.J. Biophys. 56 579–594, (1984).

    Google Scholar 

  174. P. S. Taylor, Selectivity and patch measurements of A-current channels inHelix aspersa neurons,J. Physiol. (London),388 437–448, (1987).

    CAS  Google Scholar 

  175. D. Junge, External potassium ions increases rate of opening of outward current channels in snail (Helix aspersa) neurons,Pfluegers Arch. Eur. J. Physiol. 394 94–96, (1982).

    Article  CAS  Google Scholar 

  176. K. S. Kits and P. N. R. Usherwood, Ion selectivity of single glutamategated channels in locust skeletal muscle,J. Exp. Biol. 138 499–516, (1988).

    Google Scholar 

  177. I. S. Magura, Physicochemical properties of inactivated potassium channels in the somatic membrane,Fiziol. Zh. (Kiev) 32 656–664, (1986).

    CAS  Google Scholar 

  178. L. Goldman, Internal cesium and the sodium inactivation gate inMyxicola giant axons,J. Biophys. 50 231–238, (1986).

    CAS  Google Scholar 

  179. G. R. Broun, V. I. Gouardousrii, and V. L. Cherepnov, Action of calcium and potassium channels blockers on changes in transepithelial potential and spike responses of Lorenzinian ampullae in the Black sea skate (Raja clavata)Neir ofiziologiya 17 652–660, (1985).

    CAS  Google Scholar 

  180. S. L. Cowan, The action of potassium and other ions on the injury potential and action current inMaia nerve,Proc. Roy. Soc. (London) 793 216–260.

  181. J. R. Clay and F. Shlesinger, Effects of external cesium and rubidium on outward potassium currents in squid (Loligo pealei) axons,J. Biophys. 42 43–54, (1983).

    CAS  Google Scholar 

  182. J. M. Lignon, Toxic permeabilities of the isolated gill cuticle of the shoreCarcinus maenas J. Exp. Biol. 131 159–174, (1987).

    CAS  Google Scholar 

  183. K. Herrmann, Larval development and metamorphosis ofPhronis psammophila (Phoronida, Tentaculata)Helgol. Wiss. Meere=Sunthers 32 550–581, (1979).

    Article  Google Scholar 

  184. J. I. Moss and R. A. Vansteen Wyk, Marking pink bollworm (Pectinophora gossypietla), (Lepidoptera: Gelechiidae) with cesium,Environ. Entomol. 11 1264–1268, (1983).

    Google Scholar 

  185. J. M. Quayle, N. B. Standen, and P. R. Stanfield, The voltage-dependent block of ATP-sensitive potassium channels of frog skeletal muscle by cesium and barrium ions,J. Physiol. (London) 405 677–698., (1988).

    CAS  Google Scholar 

  186. G. Champigny and J. Lenfant, Block and activation of the hyperpolarization-activated inward current by barium and cesium in frog sinus venosusPfluegers. Arch. Eur. J. Physiol. 407 684–690, (1986).

    Article  CAS  Google Scholar 

  187. G. N. Ling, Thallium and cesium in muscle cells compete for the adsorption sites normally occupied by K+ Physiol. Chem. Phys. 9 217–226, (1977).

    PubMed  CAS  Google Scholar 

  188. A. Taupignon, M. Sauvignon, and J. Lenfant, The effect of external potassium on the blockade of the inward-going rectification by cesium ions in the frog atrial trabeculae,J. Physiol. 78 803–808, (1984).

    Google Scholar 

  189. L. A. Beauge, The influence of external caesium ions on potassium efflux in frog skeletal muscle.J. Physiol. 228 1–11, (1973).

    PubMed  CAS  Google Scholar 

  190. L. A. Beauge and R. A. Slodin, Transport of caesium in frog muscle,J. Physiol. 194 104–123, (1968).

    Google Scholar 

  191. B. L. Ginsborg, The effect of caesium ions on neuromuscular transmission in the frog,Quart. J. Exp. Physiol. Cog. Med. Sci. 53 162–169, (1968).

    CAS  Google Scholar 

  192. Y. Takikawa, Effects of cesium ions on the frequency of miniature end-plate potentials at the frog neuromuscular junction.Jpn. J. Physiol. 39 75–86, (1989).

    PubMed  CAS  Google Scholar 

  193. M. V. Ermakova, Seasonal effect of some trace elements on osmotic fragility of erythrocytes in the frogRana temporavia, Zn. Evol. Bio. Khim. Fizol. 6 623–626, (1970).

    CAS  Google Scholar 

  194. H. Jentgens, Die wirkung von Rb, Cs, NHy und Li-salzen auf der Froshherz,Pflügers Arch. Ges. Physiol. 238 555–566, (1937).

    Article  CAS  Google Scholar 

  195. I. Dewolf and W. Van Driessche, Current-voltage relations of cesium-inhibited potassium currents through the apical membrane of frog skin,Pfluegers Arch. Eur. J. Physiol. 413 111–117, (1988).

    Article  CAS  Google Scholar 

  196. A. Portella, Potassium and cesium effects on sodium efflux and oxygen consumptions of muscle cells,Acta Biochim. Biophys. 109, 495–502, (1965).

    Article  Google Scholar 

  197. D. D. Bustuoabad and A. Pisano, Comparative study of the monovalent cations on development ofBufo arenarum eggs,Acta Embryol. Exp. 0 121–140, (1979).

    CAS  Google Scholar 

  198. A. Roth, Sensitivity of catfish (Kryptopterus sp) electroreceptors: Dependence on freshwater ions and skin potential,J. Comp. Physiol. A. Sens. Neural. Behav. Physiol. 147 329–338, (1982).

    Article  Google Scholar 

  199. T. Kawamura and S. Yamashita, Chemical sensitivity of lateral line organs in the goby,Gobius giurinus, Comp. Biochem. Physiol. A. Comp. Physiol. 74 253–258, (1983).

    Article  Google Scholar 

  200. M. Guerin and G. Wallon, Effect of 2,4-dinitrophenol and ouabain on the ability of cesium ions to substitute for intracellular potassium ions in isolated and perfused turtle heart,J. Physiol. (Paris) 70 467–477, (1975).

    CAS  Google Scholar 

  201. T. M. Dwyer and J. M. Farley, Permeability properties of chick myotube acetylcholine activated channels,J. Biophys. 45, 529–540, (1984).

    CAS  Google Scholar 

  202. K. W. Cochran, J. Doull, M. Mazur, and K. P. Dubois, Acute toxicity of zirconium, columbium, strontium, lanthanum, cesium, tantalum and yttrium,Arch. Industr. Hugh. Occup. Med. 1 637–650, (1950).

    CAS  Google Scholar 

  203. G. T. Johnson, T. R. Lewis, and W. D. Wagner, Acute toxicity of cesium and rubidium compounds,Toxicol. Appl. Pharmacol. 32 239–245, (1975).

    Article  PubMed  CAS  Google Scholar 

  204. B. Eichelman, E. Seagraves, and J. Barchas, Alkali metal cations: Effect on isolation-induced aggression in the mouse,Pharmacol. Biochem. Behav. 7 407–410, (1977).

    Article  PubMed  CAS  Google Scholar 

  205. F. S. Messiha, Cesium and rubidium salts: Effects on voluntary intake of ethanol by the rat,Pharmacol. Biochem. Behav. 9 647–652, (1978).

    Article  PubMed  CAS  Google Scholar 

  206. M. M. Bruk, The problem of the acute toxicity of cesium salts,Pharmacol. Toxicol. 48 200–205, (1964).

    Google Scholar 

  207. M. M. Bruk, Tolerance to and the cumulative properties of salts of stable cesium,(TK) Khar'kov. Med. Inst. 67 22–23, (1966).

    Google Scholar 

  208. M. M. Bruk, An experimental study of the circulatory action of stable cesium isotope compounds, Sb. Nauch. Tr. Khar'kov. Med. Inst.87 106–112, (1969).

    Google Scholar 

  209. N. Yu. Tarasenko and E. P. Lemesheveskaya, Effect of cesium compounds on the body,Vestn. Akad. Med. Nauk, Sssr. 8 10–18, (1978).

    Google Scholar 

  210. Y. Yamauchis, M. Nakamura, and K. Koketsu, Effects of alkali metals on spontaneous motor activities of mice,J. Kurume. Med. 19 175–178, (1972).

    Google Scholar 

  211. V. M. Bulaev and R. V. Ostrovskaya, Effect of cesium, lithium and rubidium on some effects of morphine,86 42–44, (1978).

    CAS  Google Scholar 

  212. C. Pinsky, R. Bose, J. R. Taylor, J. S. C. McKee, C. Lapointe, and J. Birchall, Cesium in mammals: acute toxicity, organ changes and tissues accumultion,J. Environ. Sci. Health (A) 5 549–567, (1981).

    Google Scholar 

  213. J. M. Nalecz and L. Wojtczak Effect of monovalent cations on the inhibition by NAD+ of NADH oxidation in submitochondrial particles,Biochem. Biophys. Res. Commun. 80 681–689, (1978).

    Article  PubMed  CAS  Google Scholar 

  214. M. Arpin, A. M. Reboud, and J. P. Reboud, Conformational changes of large ribosomal subunits of rat liver, induced by some monovalent cations,Acta Biochim. Biophys. 277 134–139, (1972).

    CAS  Google Scholar 

  215. D. Caisora and V. Eybl, Effect of calcium, indicum, cesium, terbium, Europium and gadolinium on lipoperoxidation and glutathione level in lever of mice and rats,Biologiya 41 1211–1220, (1986).

    Google Scholar 

  216. R. R. Fieve, H. Meltzer, R. M. Taylor,Psychopharmacologia 20 307, (1971).

    Article  PubMed  CAS  Google Scholar 

  217. T. Sato, A study of the postnatal change in trace element levels in rat tissues by thermal neutron activation analysis,76 215–224, (1983).

    CAS  Google Scholar 

  218. D. Hughes, R. N. McBurney, S. M. Smith, and R. Zorec, Cesium ions activate chloride channels in rat cultured spinal cord neurons,J. Physiol. (London) 392 231–252, (1987).

    CAS  Google Scholar 

  219. S. M. Smith and R. N. McBurney, Cesium ions: A glycine activated channel against in rat spinal cord neurons grown in cell culture,Br. J. Pharmacol. 96 940–948, (1989).

    PubMed  CAS  Google Scholar 

  220. S. Osmanovic and S. A. Shefner, Anamolous rectification in rat locus coeruleus neurons,Brain Res. 417 161–166, (1987).

    Article  PubMed  CAS  Google Scholar 

  221. T. Hirano, Y. Kidokoro, and H. Ohmori, Acetylcholine dose-response relation and the effect of cesium ions in the rat adrenal chromaffin cell under voltage clamp,Pfluegers. Arch. Eur. J. Physiol. 408 401–407, (1987).

    Article  CAS  Google Scholar 

  222. E. P. Sica, A. Pereyra, and J. U. Radici, The action of cesium in neuromuscular transmission,Rev. Asoc. Med. Argent. 81 176–181, (1967).

    Google Scholar 

  223. Z. G. Kokaya, M. G. Kokaya, T. Sh. Labakhua, and U. M. Okudzhava, Participation of calcium dependent potassium-conductance in membrane hyperpolarization of pyramidal neurons in the cat sensorimotor cortex,Nei'rofiziologiya 20 383–389, (1988).

    Google Scholar 

  224. E. Puil and R. Werman, Internal cesium ions block various potassium conductances in spinal motoneurons,Can. J. Physiol. Pharmacol. 59 1280–1284, (1982).

    Google Scholar 

  225. Z. Gottsfeld, Effect of lithium and other alkali metals on brain chemistry and behavior: I. glutamic acid and GABA in brain regions,Psychopharmacologia 45 283–285, (1976).

    Article  Google Scholar 

  226. R. Krulik, I. Farska, and J. Prokes, Effect of rubidium, lithium and cesium on brain ATPase and protein kinases,Neuropsychobiology 3 129–134, (1977).

    PubMed  CAS  Google Scholar 

  227. F. Doppler-Bernardi and M. Daune, Interaction of metal ions with DNA: II Preferential adsorption of cesium ion by mucleic acid,Biopolymers 7 671–680, (1969).

    Article  CAS  Google Scholar 

  228. R. Bose and C. Pinsky, Central depressant action of cesium in rats and mice,Psychopharmacology 84 80–84, (1984).

    Article  PubMed  CAS  Google Scholar 

  229. F. N. Johnson, Effects of alkali metal chlorides on activity in rats,Nature 238 333–334, (1972).

    Article  PubMed  CAS  Google Scholar 

  230. F. A. Jenner, A. Judd, and J. Parker, The effects of lithium, rubidium and caesium on the response of rats to tranylcypromine and alpha-methyl-p-tyrosine given separately or in combination,Br. J. Pharmacol. 54 233–234, (1975).

    Google Scholar 

  231. F. S. Messiha, Anti-depressant action of caesium chloride and its modification of chlorpromazine toxicity in mice,Br. J. Pharmacol. 64 9–12, (1978a).

    PubMed  CAS  Google Scholar 

  232. F. S. Messiha, Cesium and rubidium salts: effects on voluntary intake of ethanol by the rat,Pharmacol. Biochem. Behav. 9 647–651, (1978b).

    Article  PubMed  CAS  Google Scholar 

  233. R. B. Rastogi, R. L. Singhal and Y. D. Lapierre, Effects of rubidium and cesium on central catecholamines and locomotor behavior in rats,J. Neurochem. 34 1764–1767, (1980).

    Article  PubMed  CAS  Google Scholar 

  234. R. Bose and C. Pinsky, Toxicity and CNS activity of acute and chronic cesium in mice,Pharmacologist 22 158 (abstr.) (1980).

    Google Scholar 

  235. R. Bose and C. Pinsky, Cesium impairs conditioned avoidance response (CAR) in mice and rats,Proc. Can. Fed. Biol. Soc. 24 101 (abstr.), (1981).

    Google Scholar 

  236. R. Bose and C. Pinsky, Cesium attenuates conditioned avoidance response in rats and mice,Pharmacol. Biochem. Behav. 18 867–871, (1983).

    Article  PubMed  CAS  Google Scholar 

  237. R. Bose and C. Pinsky, Antipsychotic effects of cesium are suggested by mutual synergism between cesium chloride, chlorpromazine and haloperidol on conditioned avoidance response in mice,Res. Commun. Psycho. Psychia. Behav. 8 317–329, (1983).

    CAS  Google Scholar 

  238. V. A. Ivanov, D. N. Terpilouskaya, A. V. Kulikov, and T. M. Tret'yak, DNA repair in mammalian nerve cells: I. DNA synthesis in the cerebral cortex induced by gamma-irradiation of rats,Tsitologiya 29 73–78, (1987).

    CAS  Google Scholar 

  239. S. Gyorgyi and K. Blasko, Examination of the competitive effect of alkali ions in the K+, Rb+ and Cs+ transport of rat erythrocytes,Acta Biochim. Biophys. Acad. Sci. Hung. 9 97–105, (1974).

    PubMed  CAS  Google Scholar 

  240. G. S. Taylor, D. M. Paton, and E. E. Daniel, Effect of rubidium and

  241. S. M. Sims and S. Dixon, Inwardly rectifying potassium current in osteoclasts,Am. J. Physiol. 256 C 1277-C 1282, (1989).

    CAS  Google Scholar 

  242. U. G. Kulikova, Effect of sex, age, castration, sex hormones, and adrenal-ectomy on the behavior of cesium-137 and cesium-144 in rat organisms,Tr. Inst. Biol Ukal'skii Filial. Akad. Nauk. Sssr. 41, 112–123, (1966).

    Google Scholar 

  243. F. W. Tufte and M. J. Tufte, The effect of zinc gluconate, vitamin A and caesium salts on colon carcinoma in mice,Cytobios. 39, 177–182, (1984).

    PubMed  CAS  Google Scholar 

  244. Z. G. Kokaya, M. G. Kokaya, T. Sh. Labakhua, and V. M. Okudzhava, The effect of intracellular injection of cesium ions on inhibitory postsynaptic potential and postburst hyperpolarization of pyramidal neurons in the cat sensorimotor cortex, IZV.Akad. Nauk. Gruz. Ssr. Ser. Biol. 13 221–225, (1988).

    Google Scholar 

  245. D. S. Rubenstein and S. L. Lipsius, Mechanisms automaticity in subsidiary pacemakers from cat right atrium,Circ. Res. 64, 648–657, (1987).

    Google Scholar 

  246. F. Hanich, H. Levine, J. F. Spear, and E. N. Moore, Autonomic modulation of ventricular arrhythmia in cesium chloride-induced long QT syndrome,Circulation 77 1149–1161, (1988).

    PubMed  CAS  Google Scholar 

  247. J. Brachmann, B. J. Scherlag, L. V. Rosenshtraukh, and R. Lazzara, Bradycardia-dependent triggered activity: relevance to drug-induced multiform ventricular tachycardia,Circulation 68 846–856, (1983).

    PubMed  CAS  Google Scholar 

  248. B. Graham, F. Gilmour, M. Stanton, and D. P. Zipes, OPC-88117 suppresses early and delayed after depolarizations and arrhythmias induced by cesium, 4-aminopyridine and the digitalis in canine Purkinje fibres and in the canine heart in situ,Am. Heart. J. 118, 708–716, (1989).

    Article  PubMed  CAS  Google Scholar 

  249. G. Isenberg, Cardiac purkinje fibers: cesium as a tool to block inward rectifying potassium currents,Pfluegers Arch. Eur. J. Physiol. 365, 99–106, (1976).

    Article  CAS  Google Scholar 

  250. L. Edelmann, A method to examine the adsorption of potassium, rubidium and cesium to cell membranes,Biophysik 7, 247–250, (1971).

    Article  PubMed  CAS  Google Scholar 

  251. V. S. Shvl'zhenko, A. N. Khatkevich, and V. I. Kanel'ko, Protective effect of cesium ions in mycocardial ischemia,Patol. Fiziol. Eksp. Ttr. 0, 15–19, (1988).

    Google Scholar 

  252. T. Matsumoto, K. Takeshige, and S. Minakami, Spontaneous induction of superoxide release and degranulation of neutrophils in isotonic potassium medium: The role of intracellular calcium,J. Biochem. (Tokyo) 99, 1591–1596, (1986).

    CAS  Google Scholar 

  253. H. Sugawara and F. Satofuka, Effect of lithium, rubidium and cesium on the respiration and adenosinetriphosphates actively of brain mitochondria,Sci. Pap Coll. Gen. Educ. Univ. Tokyo (Biol. Part) 15, 165–172, (1965).

    CAS  Google Scholar 

  254. H. Kimura, K. Koamoto, and Y. Sakai, Climbing and parallel fiber responses recorded intracellularly from Purkinje cell dendrites in guinea pig cerebellar slices,Brain Res. 348, 213–219, (1985).

    Article  PubMed  CAS  Google Scholar 

  255. K. Prasad and K. K. Midha, Effect of cesium on the properties of cardiac muscle,Jap. Heart J. 14 454–466, (1973).

    PubMed  CAS  Google Scholar 

  256. P. Lotz, K. D. Kuhl, and E. T. Harberland, The neurobiology of the cochlea under the influence of various electrolytes,Wiss. Z. Martin Luther Univ. Halle Wittenberg Math. Naturwiss Reihe. 25 (4) 47–50 (1976).

    Google Scholar 

  257. R. Yanagimachi and A. Bhattacharya, Acrosome-reacted guinea pig spermatozoa become fusion competent in the presence of extra cellular potassium ions,J. Exp. Zool. 248(3) 354–360, (1988).

    Article  PubMed  CAS  Google Scholar 

  258. A. V. Gritsak and I. L. Kosharskaya, The action of Rb and Cs ions on depression of automatic function the ventricular pacemakers by frequent stimulation,Byull. Eksp. Biol. Med. 77 23–26, (1974).

    CAS  Google Scholar 

  259. G. D. Tagdisi and S. D. Aliev, The effect of the trace elements lithium and cesium on some indices of nonspecific resistance of the organism.Izv. Akad. Nauk. Az. Ssr. Ser. Biol. Nauk. 4 13–16, (1972).

    Google Scholar 

  260. N. Yamamoto and M. Kasai, Inhibition of a voltage-dependent cation channel in sarcoplasmic reticulum resides by cesium studied by using a potential-sensitive cyanine dye,Biochem. Biophys. Acta. 692(1) 89–96, (1982).

    Article  PubMed  CAS  Google Scholar 

  261. E. Shamoo and D. H. Maclennan, A Ca++-dependent and-selective ionophre as part of the Ca+++Mg++ dependent adenosinetriphosphatase of sacroplasmic reticulum.Proc. Natl. Acad. Sci. USA 71(4) 3522–3526, (1974).

    Article  PubMed  CAS  Google Scholar 

  262. M. J. Kornblatt and A. Klugerman, Characterization of the enolase isoenzymes of rabbit brain: kinetic differences between mammalian and yeast enolases,Biochem. Cell Biol. 67(2/3) 103–107, (1989).

    Article  PubMed  CAS  Google Scholar 

  263. M. Shigekawa and L. J. Pearl, Activation of calcium transport in skeletal muscle sarcoplasmic reticulum by monovalent cations,J. Biol. Chem. 251(22) 6947–6952, (1976).

    PubMed  CAS  Google Scholar 

  264. H. G. Glitsh, T. Krahn, and F. Verdonck, Activation of the sodium pump current by external potassium and cesium in cardioballs from sheep purkinje fibres,Arch. Eur. J. Physiol. 414(1) 99–101, (1989).

    Article  Google Scholar 

  265. M. Ya. Akhalaya, S. D. Novosel'tseva, Yu. A. Koclesnikov, G. P. Bogatyrev, E. I. Vartsev, and Y. B. Kubryashov, The effect of cesium and lithium ions on the antiradiation effectiveness of taurine,Biol. Navki. (Mosc.) 19(4) 44–46 (1976).

    CAS  Google Scholar 

  266. P. De Gomez, M. Tuena, and A. Gomez, the stimulating action of K+ on the hydrolytic activity of soluble mitochondrial ATPase,Biochem. Biophys. Res. Commun. 69(1) 201–205 (1976).

    Article  Google Scholar 

  267. P. Girard and E. Peyre, Suppression of shock and modification of anaphylactic sensitiveness by fluorescent substances.Compt. Rend. Acad. Sci. 183 84–86, (1926).

    CAS  Google Scholar 

  268. J. R. Clay and F. Shlesinger, Analysis of the effects of cesium ions on potassium channel currents in biological membranes,J. Theor. Biol. 107 189–202, (1984).

    PubMed  CAS  Google Scholar 

  269. R. K. Cheung, S. Grinstein, H. Dosch, and E. W. Gelfand, Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease,J. Cell Physiol. 112 189–196, (1982).

    Article  PubMed  CAS  Google Scholar 

  270. I. Zakrzewska, Effect of ions on amylase activity of human granulocytes,Acta Biol. Acad. Sci. Hung. 33 55–60 (1982).

    PubMed  CAS  Google Scholar 

  271. A. C. Hall and J. C. Ellory, Effects of high hydrostatic pressure on “passive” monovalent cation transport in human red cells,J. Membr. Biol. 94 1–18, (1986).

    Article  PubMed  CAS  Google Scholar 

  272. A. S. Hobbs and P. B. Dunham, Interaction of external alkali metal ions with the Na−K pump of human erythrocytes: A comparison of their effects on activation of the pump and on the rate of ouabain binding,J. Gen. Physiol. 72 381–402, (1978).

    Article  PubMed  CAS  Google Scholar 

  273. C. Vanoeteren and R. Cornelis, Evaluation of trace elements in human lung tissue, III. Correspondence analysis,The Science of the Total Environment 54 237–245, (1986).

    Article  PubMed  CAS  Google Scholar 

  274. I. Rosenblum, A. A. Stein, and L. Story, Effect of cesium, potassium and rubidium on development of tension in isolated human uterine muscle,J. Pharmacol. Exp. Therap. 152 231–234, (1966).

    CAS  Google Scholar 

  275. P. C. Mangal and R. Vijh, Effect of some monovalent and divalent cations on the electric field mediated-hemolysis of human erythrocytes,Indian J. Biochem. Biophys. 24 87–91, (1987).

    PubMed  CAS  Google Scholar 

  276. X. Cecchi, D. Wolff, O. Alvarez, and R. Latorre. Mechanisms of cesium blockade in a calcijm-activated potassium channel from smooth muscle.J. Biophys. 52, 707–716 (1987).

    CAS  Google Scholar 

  277. G. M. Khosid, Information on the health of workers producing salts of cesium and rubidium,Ref. Zh. Otd. Vyp. Farmakol. Khimioter. Sredstva. Toksikol. 11 910 (1967).

    Google Scholar 

  278. E. Fujii and T. Nomoto, Central action of cesium chloride in streptozotocin-diabetic mice,Psychopharmacology 93, 173–177 (1987).

    Article  PubMed  CAS  Google Scholar 

  279. A. El-Yazigi, C. R. Martin, and E. B. Siqueira, Concentrations of chromium, cesium and tin in cerebrospinal fluid of patients with brain neoplasms, leukemia or other noncerebral malignancies and neurological diseases,Clin. Chem. 34 1084–1086 (1988).

    PubMed  CAS  Google Scholar 

  280. W. Goddy, T. R. Williams, and D. Nicholas, Spark-source mass spectrometry in the investigation of neurological diseases, I. Multi-element analysis in blood and cerebrospinal fluid,Brain 97, 327–336 (1974).

    Article  Google Scholar 

  281. J. D. Mitchell, A. I. Harris, B. W. East, and B. Pentland, Trace elements in cerebro-spinal fluid in motor neurone disease,J. Br. Med. 288, 1791–1792 (1984).

    Article  CAS  Google Scholar 

  282. J. D. Mitchell, B. W. East, A. I. Harris, and B. Pentland, Trace element studies in amyotrophic lateral sclerosis (ALS),Acta Pharmacol. Toxicol. 59 454 (1986).

    Article  Google Scholar 

  283. H. Schicha, W. Muller, and R. Kasperek, The occurrence of trace elements in cerebral tumour sclerosis,Polska,10, 189–1989 (1972).

    CAS  Google Scholar 

  284. G. S. Shukla, Mechanism of lithium action:In vivo andin vitro effects of alkali metals on brain superoxide dismutase (SOD),Pharmacol. Biochem. Behar. 26, 235–240 (1987).

    Article  CAS  Google Scholar 

  285. T. Cserhati and M. Szogyi, Interaction between phospholipids and monovalent cations studied by a thin-layer chromatographic method,Chem. Phys. Lipids 34 93–100 (1984).

    Article  Google Scholar 

  286. P. Dais, K. R. Holme, and A. S. Perlin, A carbon-13 NMR study of selectivity of binding univalent-counterions by heparin,Can J. Chem. 66 2601–2604 (1988).

    Article  CAS  Google Scholar 

  287. S. M. Jackson, R. N. Fairley, R. O. Kornelsen, N. E. J. Young, and F. L. Wong, Clinical results of carcinoma of the cervix: radium compared to cesium using remote after loading,Clin. Radiol. 40, 320–306 (1989).

    Article  Google Scholar 

  288. M. B. Nayeboour, C. Solymoss, and S. Nattel, Cardiovascular and metabolic effects of cesium chloride injection in dogs: limination as a model for the long QT syndrome,Cardiovasc. Res. 23, 756–766 (1989).

    Article  Google Scholar 

  289. R. Vera, Cesium: another radiation hazard?Int. J. Radiat. Oncol. Biol. Phys. 11, 1060 (1985).

    PubMed  CAS  Google Scholar 

  290. A. Ghosh, A. Sharma, and G. Talukder, Clastogenic effects of cesium chloride on mouse bone marrow cellsin vivo, Mutat. Res. 244 295–298 (1990).

    Article  PubMed  CAS  Google Scholar 

  291. A. Ghosh, A. Sharma, and G. Talukder, Cytogenetic damage inducedin vivo to mice by single exposure to cesium chloride,Environ. Mol. Mutagenesis 18, 87–91 (1991).

    Article  CAS  Google Scholar 

  292. A. Ghosh, A. Sharma, and G. Talukder, Modification of cesium toxicity by calcium in mammalian systems,Biol. Tr. Ele. Res. 31, 139–147 (1991).

    Article  CAS  Google Scholar 

  293. A. Ghosh, A. Sharma, and G. Talukder, Comparison of the protection afforded by crude extract ofPhyllanthus emblica fruit and an equivalent amount of synthetic ascorbic acid against the cytotoxic effects of cesium chloride in micein vivo, Fd. Chem., Toxicol. 30, 865–869 (1992).

    Article  CAS  Google Scholar 

  294. A. Ghosh, A. Sharma, and G. Talukder, Relative protection given by extract ofPhyllanthus emblica fruit and an equivalent amount of Vitamin C against a known clastogen-cesium chloride,Int. J. Pharmacognosy, (In press) 1992.

  295. A. Ghosh, S. Sen, A. Sharma, and G. Talukder, Inhibition of clastogenic effects of cesium chloride in micein vivo by chlorophyllin,Toxicol. Lett. 57 11–16 (1991).

    Article  PubMed  CAS  Google Scholar 

  296. A. Ghosh, A. Sharma, and G. Talukder, A time-course study of the effects of cesium on mitotic cell division inAllium sativum, Ind. Bot. Soc. (In press) 1992.

  297. A. Ghosh, A. Sharma, and G. Talukder, Effect of cesium chloride on plant chromosomes,J. Cytol. Genet. (In press) 1992.

  298. N. A. Doggett and W. H. KcKenzie, An analysis of the distribution and dose response of chromosome aberrations in human lymphocytes afterin vitro exposure to137cesium gemma radiation,Radiat. Environ. Biophys. 22 33–51 (1983).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A., Sharma, A. & Talukder, G. Effects of cesium on cellular systems. Biol Trace Elem Res 38, 165–203 (1993). https://doi.org/10.1007/BF02784052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784052

Keywords

Navigation