Biological Trace Element Research

, Volume 61, Issue 2, pp 113–125 | Cite as

Changes in fatty acid composition of lipids from birds, rodents, and preschool children exposed to lead

  • Scott O. Knowles
  • William E. Donaldson
  • James E. Andrews
Original Articles


Chronic treatment with inorganic lead (Pb) has been shown to increase the proportion of arachidonic acid (ArA), as well as the arachidonate/linoleate (ArA/LA) ratio, in the fatty acids of lipids from a variety of avian tissues. Changes in two fatty acid-mediated phenomena, peroxidation of membrane lipids and synthesis of eicosanoid cytokines, are associated with this enhanced ArA content. The authors are not aware of any reports in the literature in which these effects of Pb have been described for any animals other than birds. In the current study, the authors investigated the effect of Pb on lipid metabolism in three species: avian, rodent, and human. The group of children identified as suffering environmental Pb exposure were from a Pb-surveillance program and had blood Pb concentrations (PbB) averaging 23 μg/dL. Turkey poults fed 100 ppm dietary Pb as Pb acetate-trihydrate for 19 d had a PbB of 46 μg/dL. Gastric intubation of rats with 80 mg Pb/kg/d for 10 d resulted in a PbB of 74 μg/dL. We analyzed fatty acid composition of whole blood from children, poults, and virgin rats. Low-dose (nongrowth inhibitory) Pb exposure resulted in significantly increased ArA concentration and ArA/LA ratio in blood from all species. Also analyzed were plasma and liver of poults, virgin rats, and pregnant rats and their fetuses. In plasma and liver from Pb-treated poults and virgin rats, ArA and the ArA/LA ratio were again enhanced. Pb intoxication also affected ω3 composition, increasing the concentrations of all long-chain ω3 fatty acids of fetuses from Pb-treated pregnant dams. The authors propose that altered fatty acid metabolism may be responsible for some indications of Pb poisoning. Possible consequences mediated through lipid peroxidation and production of ArA-derivative eicosanoids are considered.

Index entries

Arachidonic acid avian blood lead human linoleic acid rodent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. W. Goldstein,Neurotoxicology 14, 97–102 (1993).PubMedGoogle Scholar
  2. 2.
    T. J. B. Simons,Neurotoxicology 14, 77–86 (1993).PubMedGoogle Scholar
  3. 3.
    M. A. Verity,Environ. Health. Perspect. 89, 43–18 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    H. G. Petering, inTrace Element Metabolism in Animals-II, W.G. Hoekstra, ed., University Park Press, Baltimore, pp. 311–325 (1974).Google Scholar
  5. 5.
    W. E. Donaldson and T. K. Leeming,Toxicol. Appl. Pharmacol. 73, 119–123 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    W. E. Donaldson,Biol. Trace Element Res. 7, 255–262 (1985).CrossRefGoogle Scholar
  7. 7.
    L. J. Lawton and W. E. Donaldson,Biol. Trace Element Res. 28, 83–97 (1991).Google Scholar
  8. 8.
    A. L. Tappel,Arch. Biochem. Biophys. 50, 473–485 (1954).PubMedCrossRefGoogle Scholar
  9. 9.
    J. F. Mead, inFree Radicals in Biology: vol.1, W. A. Pryor, ed., Academic, New York, pp. 51–68 (1976).Google Scholar
  10. 10.
    M. Chvapil, J. N. Ryan, and Z. Brada,Biochem. Pharmacol. 21, 1097–1105 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    O. A. Levander, V. C. Morris, and R. J. Ferretti,J. Nutr. 107, 2135–2143 (1977).PubMedGoogle Scholar
  12. 12.
    S. J. Stohs and D. Bagchi,Free Radical Biol. Med. 18, 321–336 (1995).CrossRefGoogle Scholar
  13. 13.
    M. Hermes-Lima, B. Pereira, and E. J. H. Bechara,Xenobiotica 21, 1085–1090 (1991).PubMedGoogle Scholar
  14. 14.
    S. J. Yiin and T. H. Lin,Biol. Trace Element Res. 50, 167–172 (1994).Google Scholar
  15. 15.
    M. M. Mathias and J. Dupont,Lipids 20, 791–301 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    J. E. Kinsella, K. S. Broughton, and J. Whelan,J. Nutr. Biochem. 1, 123–141 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Käfer, H. Zältze, and H. F. Krug,Toxicol. Appl. Pharmacol. 116, 125–132 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    S. O. Knowles and W. E. Donaldson,Comp. Biochem. Physiol. 95C, 99–104 (1990).Google Scholar
  19. 19.
    Chemical & Environmental Technology, Inc., Environmental Laboratory and Consulting Services, RTP, NC 27709.Google Scholar
  20. 20.
    National Research Council,Nutrient Requirements of Poultry, Natl. Acad. Sci., Washington, DC. (1984).Google Scholar
  21. 21.
    P. W. Parks and R. E. Goins,J. Food Sci. 59, 1262–1266 (1994).CrossRefGoogle Scholar
  22. 22.
    J. Folch, M. Lees, and G. H. S. Stanley,J. Biol. Chem. 226, 477–480 (1957).Google Scholar
  23. 23.
    SAS Institute,SAS User’s Guide: Statistics, SAS Institute, Inc., Cary, NC (1987).Google Scholar
  24. 24.
    L. D. Grant, C. A. Kimmel, G. L. West, C. M. Martinez-Vargas, and J. L. Howard,Toxicol. Appl. Pharmacol. 56, 42–58 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    P. B. Hammond and P. A. Succop,Toxicol. Appl. Pharmacol. 131, 80–84 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    United States Department of Health and Human Services, Centers for Disease Control,Preventing lead poisoning in young children, CDC, Atlanta (1991).Google Scholar
  27. 27.
    National Research Council,Measuring Lead Exposure in Infants, Children, and Other Sensitive Populations, Natl. Acad. Sci., Washington, DC (1993).Google Scholar
  28. 28.
    K. Terayama,Ind. Health 31, 113–126 (1993).PubMedCrossRefGoogle Scholar
  29. 29.
    P. Lopez-Luna, I. Maier, and E. Herrera,Biol. Neonate 60, 29–38 (1991).PubMedCrossRefGoogle Scholar
  30. 30.
    R. J. Bull, P. T. McCauley, D. H. Taylor, and K. M. Croften,Neurotoxicology 4, 1–18 (1983).PubMedGoogle Scholar
  31. 31.
    British Nutrition Foundation Task Force, inUnsaturated Fatty Acids: Nutritional and Physiological Significance, Chapman & Hall, London, pp. 63–67 (1992).Google Scholar
  32. 32.
    K. S. Bjerve, S. Fischer, and K. Alme,Am. J. Clin. Nutr. 46, 570–576 (1987).PubMedGoogle Scholar
  33. 33.
    H. S. Hansen,Nutr. Rev. 52, 162–167 (1994).PubMedCrossRefGoogle Scholar
  34. 34.
    W. E. Connor, M. Neuringer, and S. Reisbick,Nutr. Rev. 50, 21–29 (1992).PubMedCrossRefGoogle Scholar
  35. 35.
    A. C. Fogerty, G. L. Ford, I. E. Dreosti, and I. J. Tinsley,Nutr. Rep. Int. 32, 1009–1019 (1985).Google Scholar
  36. 36.
    P. Mushak and A. F. Crocetti,Environ. Res. 50, 211–229 (1989).Google Scholar
  37. 37.
    J. J. Chisolm,Dev. Med. Child. Neurol. 7, 529–536 (1965).PubMedCrossRefGoogle Scholar
  38. 38.
    M. Peck, E. Mantero-Atienza, M. J. Miguez-Burbano, M. A. Fletcher, G. Shor-Posner, and M. K. Baum,Lipids 28, 593–597 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Scott O. Knowles
    • 1
  • William E. Donaldson
    • 1
  • James E. Andrews
    • 2
  1. 1.Department of ToxicologyNorth Carolina State UniversityRaleighNC
  2. 2.National HealthEnvironmental Effects Research Laboratory, Reproductive Toxicology DivisionUsepa, RTP

Personalised recommendations