Skip to main content
Log in

Changes in fatty acid composition of lipids from birds, rodents, and preschool children exposed to lead

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chronic treatment with inorganic lead (Pb) has been shown to increase the proportion of arachidonic acid (ArA), as well as the arachidonate/linoleate (ArA/LA) ratio, in the fatty acids of lipids from a variety of avian tissues. Changes in two fatty acid-mediated phenomena, peroxidation of membrane lipids and synthesis of eicosanoid cytokines, are associated with this enhanced ArA content. The authors are not aware of any reports in the literature in which these effects of Pb have been described for any animals other than birds. In the current study, the authors investigated the effect of Pb on lipid metabolism in three species: avian, rodent, and human. The group of children identified as suffering environmental Pb exposure were from a Pb-surveillance program and had blood Pb concentrations (PbB) averaging 23 μg/dL. Turkey poults fed 100 ppm dietary Pb as Pb acetate-trihydrate for 19 d had a PbB of 46 μg/dL. Gastric intubation of rats with 80 mg Pb/kg/d for 10 d resulted in a PbB of 74 μg/dL. We analyzed fatty acid composition of whole blood from children, poults, and virgin rats. Low-dose (nongrowth inhibitory) Pb exposure resulted in significantly increased ArA concentration and ArA/LA ratio in blood from all species. Also analyzed were plasma and liver of poults, virgin rats, and pregnant rats and their fetuses. In plasma and liver from Pb-treated poults and virgin rats, ArA and the ArA/LA ratio were again enhanced. Pb intoxication also affected ω3 composition, increasing the concentrations of all long-chain ω3 fatty acids of fetuses from Pb-treated pregnant dams. The authors propose that altered fatty acid metabolism may be responsible for some indications of Pb poisoning. Possible consequences mediated through lipid peroxidation and production of ArA-derivative eicosanoids are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. W. Goldstein,Neurotoxicology 14, 97–102 (1993).

    PubMed  CAS  Google Scholar 

  2. T. J. B. Simons,Neurotoxicology 14, 77–86 (1993).

    PubMed  CAS  Google Scholar 

  3. M. A. Verity,Environ. Health. Perspect. 89, 43–18 (1990).

    Article  PubMed  CAS  Google Scholar 

  4. H. G. Petering, inTrace Element Metabolism in Animals-II, W.G. Hoekstra, ed., University Park Press, Baltimore, pp. 311–325 (1974).

    Google Scholar 

  5. W. E. Donaldson and T. K. Leeming,Toxicol. Appl. Pharmacol. 73, 119–123 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. W. E. Donaldson,Biol. Trace Element Res. 7, 255–262 (1985).

    Article  CAS  Google Scholar 

  7. L. J. Lawton and W. E. Donaldson,Biol. Trace Element Res. 28, 83–97 (1991).

    CAS  Google Scholar 

  8. A. L. Tappel,Arch. Biochem. Biophys. 50, 473–485 (1954).

    Article  PubMed  CAS  Google Scholar 

  9. J. F. Mead, inFree Radicals in Biology: vol.1, W. A. Pryor, ed., Academic, New York, pp. 51–68 (1976).

    Google Scholar 

  10. M. Chvapil, J. N. Ryan, and Z. Brada,Biochem. Pharmacol. 21, 1097–1105 (1972).

    Article  PubMed  CAS  Google Scholar 

  11. O. A. Levander, V. C. Morris, and R. J. Ferretti,J. Nutr. 107, 2135–2143 (1977).

    PubMed  CAS  Google Scholar 

  12. S. J. Stohs and D. Bagchi,Free Radical Biol. Med. 18, 321–336 (1995).

    Article  CAS  Google Scholar 

  13. M. Hermes-Lima, B. Pereira, and E. J. H. Bechara,Xenobiotica 21, 1085–1090 (1991).

    PubMed  CAS  Google Scholar 

  14. S. J. Yiin and T. H. Lin,Biol. Trace Element Res. 50, 167–172 (1994).

    Google Scholar 

  15. M. M. Mathias and J. Dupont,Lipids 20, 791–301 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. J. E. Kinsella, K. S. Broughton, and J. Whelan,J. Nutr. Biochem. 1, 123–141 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. A. Käfer, H. Zältze, and H. F. Krug,Toxicol. Appl. Pharmacol. 116, 125–132 (1992).

    Article  PubMed  Google Scholar 

  18. S. O. Knowles and W. E. Donaldson,Comp. Biochem. Physiol. 95C, 99–104 (1990).

    CAS  Google Scholar 

  19. Chemical & Environmental Technology, Inc., Environmental Laboratory and Consulting Services, RTP, NC 27709.

  20. National Research Council,Nutrient Requirements of Poultry, Natl. Acad. Sci., Washington, DC. (1984).

    Google Scholar 

  21. P. W. Parks and R. E. Goins,J. Food Sci. 59, 1262–1266 (1994).

    Article  Google Scholar 

  22. J. Folch, M. Lees, and G. H. S. Stanley,J. Biol. Chem. 226, 477–480 (1957).

    Google Scholar 

  23. SAS Institute,SAS User’s Guide: Statistics, SAS Institute, Inc., Cary, NC (1987).

    Google Scholar 

  24. L. D. Grant, C. A. Kimmel, G. L. West, C. M. Martinez-Vargas, and J. L. Howard,Toxicol. Appl. Pharmacol. 56, 42–58 (1980).

    Article  PubMed  CAS  Google Scholar 

  25. P. B. Hammond and P. A. Succop,Toxicol. Appl. Pharmacol. 131, 80–84 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. United States Department of Health and Human Services, Centers for Disease Control,Preventing lead poisoning in young children, CDC, Atlanta (1991).

    Google Scholar 

  27. National Research Council,Measuring Lead Exposure in Infants, Children, and Other Sensitive Populations, Natl. Acad. Sci., Washington, DC (1993).

    Google Scholar 

  28. K. Terayama,Ind. Health 31, 113–126 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. P. Lopez-Luna, I. Maier, and E. Herrera,Biol. Neonate 60, 29–38 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. R. J. Bull, P. T. McCauley, D. H. Taylor, and K. M. Croften,Neurotoxicology 4, 1–18 (1983).

    PubMed  CAS  Google Scholar 

  31. British Nutrition Foundation Task Force, inUnsaturated Fatty Acids: Nutritional and Physiological Significance, Chapman & Hall, London, pp. 63–67 (1992).

    Google Scholar 

  32. K. S. Bjerve, S. Fischer, and K. Alme,Am. J. Clin. Nutr. 46, 570–576 (1987).

    PubMed  CAS  Google Scholar 

  33. H. S. Hansen,Nutr. Rev. 52, 162–167 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. W. E. Connor, M. Neuringer, and S. Reisbick,Nutr. Rev. 50, 21–29 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. A. C. Fogerty, G. L. Ford, I. E. Dreosti, and I. J. Tinsley,Nutr. Rep. Int. 32, 1009–1019 (1985).

    CAS  Google Scholar 

  36. P. Mushak and A. F. Crocetti,Environ. Res. 50, 211–229 (1989).

    Google Scholar 

  37. J. J. Chisolm,Dev. Med. Child. Neurol. 7, 529–536 (1965).

    Article  PubMed  Google Scholar 

  38. M. Peck, E. Mantero-Atienza, M. J. Miguez-Burbano, M. A. Fletcher, G. Shor-Posner, and M. K. Baum,Lipids 28, 593–597 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knowles, S.O., Donaldson, W.E. & Andrews, J.E. Changes in fatty acid composition of lipids from birds, rodents, and preschool children exposed to lead. Biol Trace Elem Res 61, 113–125 (1998). https://doi.org/10.1007/BF02784024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784024

Index entries

Navigation