Biological Trace Element Research

, Volume 33, Issue 1–3, pp 109–120 | Cite as

Stimulation of mucosal uptake of selenium from selenite by some thiols at various sites of rat intestine

  • Erwin Scharrer
  • Esther Senn
  • Siegfried Wolffram


The influence of several thiols (conc. 1 mmol/L) on mucosal uptake of75Se from75Se-labeled selenite (conc. 10 μmol/L) across the brush border of rat jejunum and cecum was investigated in vitro using a short-term uptake technique.l-Cysteine (l-Cys) stimulated75Se uptake in the mid- and distal jejunum and cecum, but not in the proximal jejunum. The effect was maximal in the distal jejunum.d-Cys was less effective in the jejunum and similarly effective in the cecum.l-Leucine (l-Leu) andl-glutamic acid significantly reduced the stimulatory effect ofl-Cys on Se uptake in the distal jejunum, whereas the respective effect ofd-Cys was not diminished byl-Leu. Cysteamine stimulated mucosal75Se uptake at all intestinal sites tested, whereas the effect of mercaptopyruvate was restricted to the distal jejunum. Thioglycolate also enhanced75Se uptake in the distal jejunum. The stimulatory effects ofl-Cys, mercaptopyruvate, and thiologlycolate were Na+-dependent, whereas the effect of cysteamine also occurred in the absence of Na+. Mercaptosuccinate,d-penicillamine, ergothioneine, and thiosulfate did not enhance mucosa75Se uptake. It is concluded from these findings that the reaction of some thiols with selenite results in Se compounds that are rapidly absorbed by the intestinal epithelium through various Na+-dependent and Na+-independent, mechanisms. The high bioavailability of Se from selenite found by others might thus be the result of the presence of thiols in the gastrointestinal tract.

Index Entries

Intestinal absorption of selenite influence of thiols on intestinal absorption of selenium mucosal uptake of selenium across the jejunal brush border bioavailability of selenium from selenite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Shrift,Ann. Rev. Plant Physiol. 20, 475–494 (1969).CrossRefGoogle Scholar
  2. 2.
    O. E. Olson, E. J. Novacek, E. T. Whitehead, and I. S. Palmer,Phytochemistry,9, 1181 (1970).CrossRefGoogle Scholar
  3. 3.
    K. Yasumoto, T. Suzukui, and M. Yoshida,J. Agric. Food Chem. 36, 463–467 (1988).CrossRefGoogle Scholar
  4. 4.
    K. P. McConnel and G. J. Cho,Am. J. Physiol. 298, 1191–1195 (1965).Google Scholar
  5. 5.
    S. Wolffram, B. Berger, B. Grenacher, and E. Scharrer,J. Nutr. 119, 706–712 (1989).PubMedGoogle Scholar
  6. 6.
    C. B. Ammerman and S. M. Miller,J. Dairy Sci. 58, 1561–1577 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    J. V. Van Vleet,J. Am. Med. Assoc. 176, 321–325 (1980).Google Scholar
  8. 8.
    G. Yang, K. Ge, J. Chen, and X. Chen,Wld. Rev. Nutr. Diet. 55, 98–152 (1988).Google Scholar
  9. 9.
    F. Ardüser, S. Wolffram, and E. Scharrer,J. Nutr. 115, 1203–1208 (1985).PubMedGoogle Scholar
  10. 10.
    S. Wolffram, B. Grenacher, and E. Scharrer,Quart. J. Exp. Physiol. 73, 247–264 (1988).Google Scholar
  11. 11.
    C. D. Thomson and R. D. M. Stewart,Br. J. Nutr. 30, 139–147 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    P. G. Reasbeck, G. O. Barbezat, F. L. Weber, Jr., C. D. Robinson, and C. D. Thomson,Dig. Dis. Sci. 30, 489–494 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    A. R. Mangels, P. B. Moser-Veillon, K. Y. Patterson, and C. Veillon,Am. J. Clin. Nutr. 52, 621–627 (1990).PubMedGoogle Scholar
  14. 14.
    S. Wolffram, E. Anliker, and E. Scharrer,Biol. Trace Element Res. 10, 293–306 (1986).Google Scholar
  15. 15.
    C. D. Thomson and M. F. Robinson,Am. J. Clin. Nutr. 44, 659–663 (1986).PubMedGoogle Scholar
  16. 16.
    E. Scharrer, S. Wolffram, R. Würmli, and B. Berger,Mammalian Brush Border Membrane Proteins, M. J. Lentze and E. E. Sterchie, eds., Georg Thieme, Stuttgart, 1988, pp. 174–183.Google Scholar
  17. 17.
    H. M. Mykkanen and R. H. Wasserman,J. Nutr. 199, 242–247 (1989).Google Scholar
  18. 18.
    E. Scharrer, R. Würmli, and S. Wolffram,Selenium in Medicine and Biology, J. Nève and A. Favier, eds., Walter de Gruyter, Berlin, 1989, pp. 55–58.Google Scholar
  19. 19.
    E. Scharrer,Pflügers Arch. 376, 245–249 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    E. Scharrer, S. Wolffram, W. Raab, B. Amann, and N. Agne,Mechanism of Intestinal Adaptation, J. W. L. Robinson, R. H. Dowling, and E.-O. Riecken, eds., MTP Press Ltd., Lancaster, 1982, pp. 123–139.Google Scholar
  21. 21.
    R. Würmli, S. Wolffram, Y. Stingelin, and E. Scharrer,Biol. Trace Element Res. 20, 75–85 (1989).CrossRefGoogle Scholar
  22. 22.
    S. Holm,Scand. J. Statistics 6, 65–70 (1979).Google Scholar
  23. 23.
    H. E. Ganther,Biochemistry 10, 4089–4098 (1971).PubMedCrossRefGoogle Scholar
  24. 24.
    H. E. Ganther,J. Am. Coll. Toxicol. 5, 1–5 (1986).Google Scholar
  25. 25.
    U. Hopfer,Physiology of the Gastrointestinal Tract, 2d ed., L. R. Johnson, ed., Raven, New York, 1987, pp. 1499–1526.Google Scholar
  26. 26.
    A. H. Cantor, C. D. Sutton, and T. H. Johnson,Poultry Science 63, 2429–2432 (1983).Google Scholar
  27. 27.
    A. H. Cantor, M. L. Scott, and T. Noguchi,J. Nutr. 105, 96–105 (1975).Google Scholar
  28. 28.
    D. E. Freeman, A. Kleinzeller, W. J. Donawick, and V. A. Topkis,Am. J. Vet. Res. 50, 2138–2144 (1989).PubMedGoogle Scholar
  29. 29.
    J. L. Browne, P. A. Sanford, and D. H. Smyth,Proc. Royal Soc., London,200, 117–135 (1978).Google Scholar
  30. 30.
    B. Hildmann, C. Storelli, W. Haase, M. Barac-Nieto, and H. Murer,Biochem. J. 186, 169–176 (1980).PubMedGoogle Scholar
  31. 31.
    S. Wolffram, B. Bisang, B. Grenacher, and E. Scharrer,J. Nutr. 120, 767–774, (1990).PubMedGoogle Scholar
  32. 32.
    J. Mårtensson, L. Nilsson, and B. Sörbo,FEBS Letters 176, 334–336 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    M. T. Zavy and T. O. Lindsay,Brit. Poultry Sci. 29, 409–417 (1988).CrossRefGoogle Scholar
  34. 34.
    E. Man and J. L. Bada,Ann. Rev. Nutr. 7, 209–225 (1987).CrossRefGoogle Scholar
  35. 35.
    D. Eberle, R. S. Clarke, and N. Kaptowitz,J. Biol. Chem. 256, 2115–2117 (1981).PubMedGoogle Scholar
  36. 36.
    T. M. Hagen, G. T. Wierzbicka, B. B. Bowman, T. Y. Aw, and D. P. Jones,Am. J. Physiol. 259, G530-G535 (1990).PubMedGoogle Scholar
  37. 37.
    E. M. Kozak and S. S. Tate,J. Biol. Chem. 257, 6322–6327 (1982).PubMedGoogle Scholar
  38. 38.
    E. Senn, E. Scharrer, and S. Wolffram,Biol. Trace Element Res., 1992, in press.Google Scholar
  39. 39.
    W. A. Gahl, G. F. Reed, J. G. Thoene, J. D. Schulman, W. B. Rizzo, A. J. Jonas, D. W. Denman, J. J. Schlesselman, B. J. Corden, and J. A. Schneider,N. Engl. J. Med. 316, 971–977 (1987).PubMedCrossRefGoogle Scholar
  40. 40.
    B. C. Sonies, E. F. Ekman, H. C. Andersseon, M. D. Adamson, S. G. Kalev, T. C. Markello, and W. A. Gahl,N. Engl. J. Med. 323, 565–570 (1990).PubMedCrossRefGoogle Scholar
  41. 41.
    P. K. Rangacheri and W. F. Kean,Baillière's Clin. Rheumatol. 3, 411–623 (1989).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1992

Authors and Affiliations

  • Erwin Scharrer
    • 1
  • Esther Senn
    • 1
  • Siegfried Wolffram
    • 1
  1. 1.Institute of Veterinary PhysiologyUniversity of ZürichZürichSwitzerland

Personalised recommendations